

Semester End Examination, January/February, 2022

Degree		B. Tech. (U. G.)	Program	CSE (AI \& ML)			Academic Year		2021-2022	
Course	Code	20Al302	Test Duration	3 Hrs .	Max. Marks	70		mester		
Course		Artificial Neural Networks								
Part A (Short Answer Questions $5 \times 2=10$ Marks)										
No.	Questions (1 through 5)						Learning Outcome (s)			DoK
1	List any four features of human brain and ANN							20Al302.		L1
2	What is the significance of bias in ANN?							20 Al 302.		L1
3	What are perceptron?							20 Al 302.		L1
4	What is generalization in ANN?							20 Al 302.		L1
5	List any two applications of associative memory							20Al302.		L1
Part B (Long Answer Questions 5×12 = 60 Marks)										
No.	Questions (6 through 15)					Mark		Learning Outco	me (s)	DoK
6 (a)	Describe the function of biological neuron and human brain					6M		20 Al 302.		L1
6 (b)	Describe the function of artificial neuron and artificial neural network					6M		20Al302.		L1
OR										
7 (a)	Explain any 6 terminologies of ANN					6M		20 Al 302.		L1
7 (b)	Write about any 6 activation functions					6M		20Al302.		L1
8	Explain McCulloh Pitts neuron and its functions and its implementation for logical operations					12M		20Al302.		L2
OR										
9	Explain the functioning of Hebbian network and its implementation for logical operations					12M		20Al302.2		L2
10	Explain least mean square algorithm					12M		20Al302.		L2
OR										
11	Explain perceptron convergence theorem					12M		20Al302.		L2
12	With necessary diagrams and algorithms, explain back propagation network					12M		20Al302.		L2
OR										
13 (a)	Write about the limitations of back propagation network					6M		20Al302.		L2
13 (b)	Describe convolution networks					6M		20Al302.		L2
14 (a)	Describe hetero associative memory					6M		20Al302.		L2
14 (b)	Explain the training algorithm for auto-associative memory					6M		20 Al 302.		L2
OR										
15	Explain the functioning of bi-directional associative memory with its architectural diagram and its applications					12M		20Al302.		L2

Semester End Examination, January/February, 2022

10 (a)	Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ by Trapezoidal and Simpson's $3 / 8^{\text {th }}$ rule, by dividing the interval $(0,6)$ into 6 parts	6M	20BSX13.3	L2
10 (b)	Solve $y^{\prime}=x y+1, y(0)=1$ using Taylor's series method and $\text { compute } \mathbf{y (0 . 1)}$	6M	20BSX13.3	L3
OR				
11 (a)	Evaluate $\int_{0}^{\mathbf{0}} \frac{\mathbf{1}}{\mathbf{1 + x}} \boldsymbol{d x}$ by Simpson's $\frac{1}{3}$ rd and Simpson's $\frac{3}{8}$ th rule	6M	20BSX13.3	L2
11 (b)	Using Runge-Kutta 4th order method, evaluate $y(0.1)$ and $y(0.2)$ given that $y^{1}=x+y, y(0)=1$.	6M	20BSX13.3	L3
12 (a)	Show that $\int_{0}^{\infty} t^{2} e^{-4 t} \sin 2 \mathrm{tdt}=\frac{1}{250}$	6M	20BSX13.4	L3
12 (b)	Using convolution theorem, evaluate $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right\}$	6M	20BSX13.4	L2
OR				
13 (a)	Evaluate $\mathrm{L}\left\{\frac{\operatorname{cosat-cosbt}}{\boldsymbol{t}}+\boldsymbol{t} \sin a t\right\}$	6M	20BSX13.4	L2
13 (b)	Solve $y^{\prime \prime \prime}(\mathrm{t})+\mathrm{y}(\mathrm{t})=1$, if $\mathrm{y}(0)=y^{z}(0)=y^{n \prime}(0)=0$ using transform method.	6M	20BSX13.4	L3
14 (a)	Find the Fourier Transform of $f(x)=e^{\frac{-x^{2}}{2}}$	6M	20BSX13.5	L3
14 (b)	$\begin{aligned} & \text { Find the Fourier cosine transform of } \\ & f(x)=\left\{\begin{array}{c} x \text {, } \text { for } 0<x<1 \\ 2-x \text {, for } 1<x<2 \\ 0 \text {, for } x>3 \end{array}\right. \end{aligned}$	6M	20BSX13.5	L2
OR				
15 (a)	Find the Fourier Transform of $f(x)=\left\{\begin{array}{c}1,-1<x<1 \\ 0, \text { otherwise }\end{array}\right.$	6M	20BSX13.5	L2
15 (b)	Find the Fourier sine transform of $\boldsymbol{f}(\boldsymbol{x})=\frac{\boldsymbol{e}^{-\boldsymbol{a x}}}{\boldsymbol{x}}$.	6M	20BSX13.5	L3

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ECE		Academic Year	$2021-2022$	
Course Code	20BSX14	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Course	Complex Variables \& Transforms						

Part A (Short Answer Questions 5×2 = 10 Marks)				
No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	Write the Cauchy - Riemann ($\mathrm{C}-\mathrm{R}$) Equations in Cartesian form and in Polar Form		20BSX14.1	L1
2	Expand $f(z)=\sin z$ in Taylor's series about $z=\frac{\pi}{4}$.		20BSX14.2	L2
3	Write the Euler's formulae		20BSX14.3	L2
4	Find Laplace Transform of $\left(t^{2}+1\right)^{2}$		20BSX14.4	L1
5	Write the Dirichlet's Conditions		20BSX14.5	L1
Part B (Long Answer Questions $5 \times 12 \mathbf{6 0}$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Evaluate $\int_{c} \frac{z^{\pi}-\sin 3 z}{\left(z-\frac{\pi}{z}\right)^{3}} d z$ with $\mathrm{C}:\|z\|=2$ using Cauchy's integral formula	6M	20BSX14.1	L3
6 (b)	Find the regular function whose imaginary part is $v=\log \left(x^{2}+y^{2}\right)+x-2 y$	6M	20BSX14.1	L2
OR				
7 (a)	Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path (i) $y=x$ and (ii) $y=x^{2}$	6M	20BSX14.1	L2
7 (b)	Show that the function $f(z)=\sqrt{ }\|x y\|$ is not analytic at the origin although Cauchy - Riemann equations are satisfied at that point	6M	20BSX14.1	L3
8 (a)	Find the Taylor's expansion of $f(z)=\frac{2 z^{8}+1}{z^{2}+z}$ about the point $z=i$.	6M	20BSX14.2	L2
8 (b)	Find the residue of $\frac{z^{3}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$ at each pole	6M	20BSX14.2	L3
OR				
9 (a)	Find the Laurent's series expansion of the function $f(z)=\frac{z^{3}-6 z-1}{(z+1)(z-3)(z+2)}$ in the region $3<\|z+1\|<5$.	6M	20BSX14.2	L2
9 (b)	Evaluate $\int_{c} \frac{z-3}{z^{z+2 z+5}} d z$, where c is the circle given by (i) $\|z\|=1$,(ii) $\|z+1-i\|=2$, (iii) $\|z+1+i\|=2$.	6M	20BSX14.2	L3

10 (a)	Obtain the Fourier series for the function $f(x)=e^{a x}$ in $(0,2 \pi)$	6M	20BSX14.3	L2
10 (b)	Find the half range series for $f(x)=x(\pi-\mathrm{x})$, in $0<x<\pi$. Deduce that $\frac{1}{1^{a}}-\frac{1}{3^{a}}+\frac{1}{5^{a}}-\frac{1}{7^{\mathrm{a}}}+\cdots=\frac{\pi^{8}}{32}$	6M	20BSX14.3	L3
OR				
11 (a)	Expand the function $f(x)=x^{2}$ as a Fourier series in $[-\pi, \pi]$.	6M	20BSX14.3	L2
11 (b)	Find the Fourier series to represent $f(x)=x^{2}$, when $-2 \leq x \leq 2$.	6M	20BSX14.3	L3
12 (a)	Find Laplace Transform of $e^{2 t}(3 \sinh 2 t-5 \cosh 2 t)$	6M	20BSX14.4	L2
12 (b)	Show that $\int_{0}^{\infty} t^{2} e^{-2 t} \sin 2 t d t=\frac{11}{500}{ }^{\circ}$	6M	20BSX14.4	L3
OR				
13 (a)	Using Laplace transform method solve $\left(D^{2}+1\right) y=6 \cos 2 t, \quad t>0 .$	6M	20BSX14.4	L2
13 (b)	Using Convolution theorem find $L^{-1}\left\{\frac{1}{(s-2)(s+2)^{2}}\right\}$	6M	20BSX14.4	L3
14 (a)	Using Fourier integral then show that $e^{-a x}-e^{-b x}=\frac{2\left(b^{2}-a^{2}\right)}{\pi} \int_{0}^{\infty} \frac{\lambda \sin \lambda x d \lambda}{\left(\lambda^{2}+a^{2}\right)\left(\lambda^{2}+b^{2}\right)},$ where $a, b>0$.	6M	20BSX14.5	L2
14 (b)	Find the Fourier Sine and Cosine transform s of $f(x)=\frac{e^{-a x}}{x}$ and deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin s x d x=\tan ^{-1} \frac{s}{a}-\tan ^{-1} \frac{s}{b} .$	6M	20BSX14.5	L3
OR				
15 (a)	Find the Fourier transform of $f(x)$ defined by $f(x)=\left\{\begin{array}{l}1,\|x\|<a \\ 0,\|x\|>a\end{array}\right.$ and hence find $\int_{0}^{\infty} \frac{\sin p}{p} d p$ and $\int_{-\infty}^{\infty} \frac{\operatorname{sinap} \operatorname{cospx}}{p} d p$	6M	20BSX14.5	L2

$\begin{array}{|l|l|l|l|}\hline \text { Find the Fourier transform of } f(x) \text { defined by } & & \\ \hline 15(\mathrm{~b}) & f(x)= \begin{cases}1-x^{2}, \text { if }|x|<1 \\ 0, & \text { if }|x|>1\end{cases} & 6 \mathrm{M} & \text { 20BSX14.5 }\end{array} \quad$ L3 $\}$

Semester End Examination, January/February, 2022

Degree		B. Tech. (U. G.)	Program	CSE, CSE (AI \& ML) \& CSE (DS)			Academic Year	2021-2022 III	
Course Code		20BSX16	Test Duration	3 Hrs .	Max. Marks	70	Semester		
Course		Mathematical Foundations for Computer Science							
Part A (Short Answer Questions $5 \times 2=10$ Marks)									
No.	Questions (1 through 5)						Learning Outcome (s)		DoK
1	Define Tautology. Explain with truth table and suitable example						20BSX16.1		L1
2	Prove that the relation divides ($/$) is a partial ordered set in the set of integers						20BSX16.2		L2
3	State Division Algorithm						20BSX16.3		L1
4	Find the first two terms in the sequence defined by the recurrence relation $a_{n}=6 a_{n-1}$ with initial condition $a_{0}=2$						20BSX16.4		L2
5	Define cycle graph, write the cycle graphs for $\mathrm{c}_{4}, \mathrm{c}_{5}$						20BSX16.5		L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)									
No.	Questions (6 through 15)					Marks	Learning Outcome (s)		DoK
6 (a)	Define converse, inverse and contra positive with truth table and suitable example					6M	20BSX16.1		L2
6 (b)	Write the truth table $P \rightarrow(Q \rightarrow R)$					6M	20BSX16.1		L3
OR									
7 (a)	(i) Obtain the Disjunctive Normal form of $\sim P \rightarrow\left(Q^{\wedge} R\right)$ (ii) Obtain the Conjunctive Normal form of $\mathrm{P}^{\wedge}(\mathrm{P} \rightarrow \mathrm{Q})$					6M	20BSX16.1		L2
7 (b)	Show that the hypotheses "It is not sunny this afternoon and it is a colder than yesterday", "We will go swimming only if it is sunny", " If we do not go swimming, then we will take a canoe trip", and "If we take a canoe trip, then we will be home by sunset" lead to the conclusion "We will be home by sunset"					6M	20BSX16.1		L3
8 (a)	Write the matrix representation and directed graph of the relation on the set $A=\{1,2,3,4\}$ where $R=\{(1,1),(1,2),(2,1)$, $(2,2),(2,4),(3,3),(3,1),(4,3),(4,1),(3,2)\}$					6M	20BSX16.2		L3
8 (b)	Construct the Hasse diagram of (\{1,2,3,4,6,8,12\}, divides(/))					6M	20BSX16.2		L2
OR									
9 (a)	Let $S=\{1,2,3,4\}$ and let $f=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$ and $g=$ $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right)$ Find $f \circ g$ and $g \circ f$ in the permutation form					6M	20BSX16.2		L3
9 (b)	Define group and prove that a * $b=a+b+1$ is an abelian group in set of integers					6M	20BSX16.2		L2
10 (a)	State and prove Euler's theorem. Give an example					6M	20BSX16.3		L2
10 (b)	Prove that for all integers a, b, c, (i) if $a \mid b$, then $a \mid b c$ (ii) if $a \mid b$ and $b \mid c$ then $a \mid c$ for all a, b, c integers					6M	20BSX16.3		L3
OR									
11 (a)	State and prove Fermat's theorem					6M	20BSX16.3		L2
11 (b)	Find the gcd of 42823 and 6409 using Euclidean algorithm					6 M	20BSX16.3		L3
12 (a)	Find the particular solution of the recurrence relation an $+2-4$ $\mathrm{an}+1+4$ an $=2 \mathrm{n}$?					6M	20BSX16.4		L3

12 (b)	Solve the recurrence relation an -2 an-1-3 an-2 $=0, n>2$ by the generating function method $\mathrm{a} 0=3, \mathrm{a} 1=1$	6M	20BSX16.4	L2
OR				
13 (a)	Find all solutions of the recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}+7^{n}$	6M	20BSX16.4	L2
13 (b)	Find the explicit formula for the Fibonacci numbers	6M	20BSX16.4	L3
14 (a)	Explain about the bipartite and complete biparite Graphs with diagrams	6M	20BSX16.5	L3
14 (b)	Show that the following two graphs are isomorphic G1	6M	20BSX16.5	L2
OR				
15 (a)	Define Eulerian circuit and Hamiltonian circuit, give an example of graph that has neither an Eulerian circuit nor Hamiltonian circuit	6M	20BSX16.5	L2
15 (b)	Explain kruskal's algorithm to find minimal spanning tree of the graph with suitable example	6M	20BSX16.5	L3

Semester End Examination, January/February, 2021

Degree	B. Tech. (U. G.)	Program	Civil Engineering	Academic Year	2021-2022	
Course Code	20CE302	Test Duration	3 Hrs. Max. Marks	70	Semester	III
Course	Building Planning And Drawing					

Part A (Short Answer Questions $14 \times 3=42$ Marks)

No. Questions (1 through 5) Marks Learning Outcome (s) DoK Draw the following sign conventions brick, plywood, sheet
1(a) metal, concrete, glass, manhole, showerhead, Washbasin, Pump, urinal stall
1(b) Draw rough sketch for english bond for $1 \frac{1}{2}$ brick wall 7 M
2(a) Describe the principle and necessity of building bye-laws
2(b) Explain the provision of height of buildings and requirement of
3(a) Write classification of buildings and explain each of them 7
3(b) Discuss the functions and requirements of kitchen and master bedroom
4(a) Explain the different features of a queen post roof truss 7 M
4(b) Explain clearly difference between flush and glazed door 7 M 7 M
5(a) Draw the layout for the hospital building 7 M
5(b) Explain in detail with neat sketch about planning of a bank building

7 M	20CE302.2	L 2
7 M	20CE302.2	L 2
7 M	20CE302.3	L 2
7 M	20 CE 302.3	L 3
7 M	20 CE 302.4	L 3
7 M	20CE302.4	L 3
7 M	20CE302.5	L 3
7 M	20 CE 302.5	L 3

Part B (Long Answer Questions $1 \times 28=28$ Marks)
No. Questions (6 through 7)
6(a) Draw the plan and sectional elevation of a glazed door of size $1.2 \times 2.1 \mathrm{~m}$

Marks Learning Outcome (s) DoK
14 M
Draw the detailed elevation of a king post roof truss of 6 m clear span. Indicate all features.

14 M
OR
Draw plan, section, elevation for the below line diagram and assume suitable dimensions and section line. All dimensions are in mm .

Semester End Examination, January/February, 2022

Degree		B. Tech. (U. G.)	Program	Civil Eng	gineering		Academic Year	2021	2022
Course Code		20CE303	Test Duration	3 Hrs.	Max. Marks	70	Semester		III
Course SURVEYING		SURVEYING							
Part A (Short Answer Questions $5 \times 2=10$ Marks)									
No.	Questions (1 through 5)						Learning Outcome (s)		DoK
	What is the object or purpose of surveying?						20CE303.1		L1
2	What is its back bearing?						20CE303.2		L1
3	What is mean by line of collimation and height of collimation?						20CE303.3		L1
4	List the essential qualities of a theodolite telescope						20CE303.4		L1
5	What are the functions of a transition curve?						20CE303.5		L1
Part B (Long Answer Questions $5 \times 12 \mathbf{6 0}$ Marks)									
No.	Questions (6 through 15)					Marks	Learning Outcom	e (s)	DoK
6	Give a detailed classification of Surveys					12 M	20CE303.1		L2
OR									
7 (a)	Illustrate the errors in survey measurements					6M	20CE303.1		L1
7 (b)	A 30 m chain was found to be 3 cm too long after chaining 1800 m . It was 9 cm too long at the end of day's work after chaining a total distance of 3000 m . If the chain was correct before commencement of the work, find the true distance					6M	20CE303.1		L1
8	Describe the field procedure of compass survey					12M	20CE303.2		L2
OR									
9 (a)	List out the temporary and permanent adjustments of a level. State the desired relations					6M	20CE303.2		L1
9 (b)	What is local attraction? How is it detected and eliminated?					6M	20CE303.2		L1
10 (a)	Draw the neat sketch of dumpy level and explain its component parts					6M	20CE303.3		L1
10 (b)	Differentiate between the fixed hair method and movable hair method					6M	20CE303.3		L1
OR									
11	Differentiate between the stadia and Tangential methods of tachometry. Discuss their merits and demerits					12M	20CE303.3		L1
12	Two observations were taken upon a vertical staff by means of a theodolite, the reduced level of its trunnion axis being 160.95. In the case of the first, the angle of elevation was $4^{\circ} 36^{\prime}$ and the staff reading 0.75 . In the case of second observation, the staff reading was 3.45 and the angle of elevation $5^{\circ} 48^{\prime}$. Calculate the reduced level of the staff station and its distance from the instrument					12M	20CE303.4		L1
OR									
13 (a)	Write about the Total Station and state its advantage over other methods of surveying					6M	20CE303.4		L2
13 (b)	Illustrate the methods of setting out simple curves? Explain any one method with a neat sketch					6M	20CE303.4		L2
14 (a)	List out in detail the parts of theodolite					6M	20CE303.5		L1
14(b)	Explain the permanent adjustment of theodolite					6M	20CE303.5		L1

15 (a)	What are different types of vertical curves? Draw neat sketches	6 M	20CE303.5	L2
15 (b)	Describe the procedure for setting out simple circular curve with a tape and a theodolite	6 M	20CE303.5	L 2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U.G.)	Program	Civil Engineering		Academic Year	2021-2022
Course Code	20CE304	Test Duration	3 Hrs.	Max. Marks	70	Semester
III						
Course	Strength of Materials					

Part A (Short Answer Questions $5 \times 2=10$ Marks)				
No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	Draw the stress strain diagram for mild steel subjected to tensile load test		20CE304.1	L1
2	Define the terms (i) Bending stress (i) Shear stress		20CE304.2	L1
3	Define the terms (i) Slope (ii) Deflection for a beam		20CE304.3	L1
4	Define (i) Slenderness ratio (ii) Radius of Gyration		20CE304.4	L1
5	Write the relationship between power transmitted and torque		20CE304.5	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	Dok
6 (a)	Explain clearly the different types of stresses and strains	6M	20CE304.1	1
6 (b)	Derive an expression for Young's modulus in terms of bulk modulus	6M	20CE304.1	L2
OR				
7 (a)	Write note on Mohr's circle of stresses The stresses at a point in a bar are $200 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $100 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at $60{ }^{\circ}$ to the axis of the major stress. Also determine the maximum intensity of shear stress in the material at the point	6M	20CE304.1	L1
7 (b)		6M	20CE304.1	L2
8	A cast iron beam section is of I - section with a top flange 80 mm x 20 mm thick, bottom flange $160 \mathrm{~mm} \times 40 \mathrm{~mm}$ thick and the web 200 mm deep and 20 mm thick. The beam is freely supported on a span of 5 metres. if the tensile stress is not to exceed 20 $\mathrm{N} / \mathrm{mm}^{2}$.find the safe uniformly distributed load which the beam can carry . Find also the maximum compressive stress	12M	20CE304.2	L3
OR				
9 (a)	Find the section modulus for (i) hollow circular section (ii) circular section	6M	20CE304.2	L2
9 (b)	Find the ratio of maximum shear stress to average shear stress is 1.5 in case of rectangular section	6M	20CE304.2	L3
		6M	20CE304.3	1
10 (b)	Write and explain Moment area theorems Derive an expression for the slope and deflection of a Simply supported beam with a uniformly distributed load	6M	20CE304.3	L2
OR				
11 (a)	Derive an expression for the slope and deflection of a cantilever of length L , carrying a point load W at free end by double integration method	6M	20CE304.3	L2
11 (b)	A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of $9 \mathrm{kN} / \mathrm{m}$ run over the entire span of 5 m . the value of $E=1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$, find the slope at support and and maximum deflection	6M	20CE304.3	L3
12 (a)	Derive an expression for crippling load when both ends of the column are hinged	6M	20CE304.4	L2

12 (b)	A simply supported beam of length 4 metres is subjected to uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ over the whole span and deflects 15 mm at the centre. Determine the crippling loads when the beam is used as column with the following conditions. I. One end fixed and other end hinged II. Both the ends pin jointed	6M	20CE304.4	L3
OR				
13(a)	A hollow cylindrical cast iron column is 4 m long with both ends fixed. Determine the minimum diameter of the column if it has to carry a safe load of 250 kN with a factor of safety. Take the internal diameter as 0.8 times the external diameter Take $\sigma_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{a}=\frac{1}{1600}$ in Rankine's formula	8M	20CE304.4	L3
13(b)	A rectangular column of Width 200 mm and of thickness 150 mm carries a point load of 240 kN at an eccentricity of 10 mm determine the maximum and minimum stresses on the section	4M	20CE304.4	L3
14	Derive the Torsion equation	12M	20CE304.5	L2
OR				
15(a)	Explain clearly the different types of springs and their applications	6M	20CE304.5	L1
15(b)	Write short note on thin cylinders and thick cylinders	6M	20CE304.5	L1

Semester End Examination, January/February, 2022

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	CSE, CSE (AI \& ML) \& CSE (DS)			Academic Year	2021-2022
Course Code	20CS302	Test Duration	3 Hrs .	Max. Marks	70	Semester	III
Course	Design and Analysis of Algorithms						

Part A (Short Answer Questions 5×2 = 10 Marks)

No.	Questions (1 through 5)	Learning Outcome (s)	DoK
1	Define time complexity and space complexity	$20 C S 302.1$	L1
2	State Master theorem	20 CS302.2	L1
3	Write the general method of dynamic programming	$20 C S 302.3$	L2
4	What are NP Hard problems?	20 CS302.4	L1
5	Write the general principle of branch and bound technique	$20 C S 302.3$	L2
Part B (Long Answer Questions $\mathbf{5} \mathbf{~ 1 2 = 6 0 ~ M a r k s) ~}$			

No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Describe the asymptotic classes. Give example	6M	20CS302.2	L2
6 (b)	Write the recursive algorithm to find factorial of given number and analyze its time complexity	6M	20CS302.2	L2
OR				
7 (a)	Write the String-matching algorithm. Explain it with example	6M	20CS302.2	L2
7 (b)	Apply bubble sort algorithm to sort the characters of "EXAMPLE"	6M	20CS302.2	L2
8 (a)	Find the topological ordering of vertices of given graph	6M	20CS302.4	L3
8 (b)	Sort the given array using quick sort algorithm (24, 9, 29, 14, 19, 27)	6M	20CS302.4	L3
OR				
9 (a)	Explain Karatsuba's algorithm to multiply 2 large integers	6M	20CS302.4	L3
9 (b)	Apply the algorithm to find the product of 1234 and 8765	6M	20CS302.4	L3

Explain Prim's algorithm to find the minimum cost spanning tree. Apply it to the following graph

OR				
11 (a)	Design a dynamic programming based algorithm to solve $0 / 1$ knapsack problem. Apply it solve the following problem $\mathrm{N}=5, \mathrm{~W}=6$, weight vector $=(3,2,1,4,5)$, cost vector $=(25,20,15,40,50)$	12M	20CS302.3	L3
12 (a)	Describe approximation algorithms for NP-Hard graph problems	12M	20CS302.5	L2
OR				
13 (a)	State and describe Cook's theorem	6M	20CS302.5	L2
13 (b)	Explain NP Complete problems with examples	6M	20CS302.5	L2
14 (a)	Describe the least-cost based branch and bound strategy	4M	20CS302.3	L2
14 (b)	Solve the following problem by designing an algorithm using appropriate design strategy There are 4 jobs that are to be assigned to 4 persons a, b, c, d. The cost involved in assignment is given below. Find the optimal assignment $C=\left[\begin{array}{ccccc} \text { job 1 } & \text { job 2 } & \text { job 3 } & \text { job 4 } \\ {\left[\begin{array}{cccc} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{array}\right] \begin{array}{l} \text { person } a \\ \text { person } b \\ \text { person } c \\ \text { person } d \end{array}} \end{array}\right.$	8M	20CS302.4	L3
OR				
15 (a)	State n-Queen's problem statement	4M	20CS302.3	L2
15 (b)	Generate at least 2 solutions to 8 -Queen's problem and draw its statespace tree	8M	20CS302.4	L3

Semester End Examination, January/February, 2022

Degree		B. Tech. (U. G.)		Program		CSE, CSE (AI \& ML) \& CSE (DS)			Academic Year Semester	2021-2022	
Course	Code	20CS303		Test Duration		3 Hrs .	Max. Marks	70			III
Course		Database Management System									
Part A (Short Answer Questions $5 \times 2=10$ Marks)											
No.	Questions (1 through 5)								Learning Outcome (s)		DoK
1	List out four Database applications								20CS303.1		L1
2	What is entity relation constraint								20CS303.2		L1
3	List out all commands in DML								20CS303.3		L1
4	What is Normalization?								20CS303.4		L1
5	Define durability and atomicity of a transaction								20CS303.5		L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)											
No.	Questions (6 through 15)							Marks	Learning Outco		DoK
6 (a)	Compare file system with database system							6M	20CS303.1		L2
6 (b)	Explain the symbols used to draw ER diagram and construct ER diagram for hospital							6M	20CS303.1		L2
OR											
7 (a)	What is a data base model? Explain any two of them							6M	20CS303.1		L2
7 (b)	Explain architecture of DBMS with neat diagram							6M	20CS303.1		L2
8	Explain different join operation in relational algebra							12M	20CS303.2		L2
OR											
9 (a)	What is view? Explain commands for performing view operations							6M	20CS303.2		L2
9 (b)	Explain any four operators used in relational algebra with examples							6M	20CS303.2		L2
10 (a)											
	Explain Nested queries with example							6M	20CS303.3		L2
	An instance of sailors relation							6M	20CS303.3		L3
10 (b)	SID SNAME RATING AGE 18 Jones 3 30.0 41 Jonah 6 56.9 22 Ahab 7 44.0 63 Mobay Null 15.0										
	1. Write SQL query to compute the average rating using AVG, the sum of the rating, using SUM and number of ratings using COUNT 2. If you divide sum computed above by count, would be result be same as the average? How would your answer change, if the above steps were carryout with respect to the age field instead of rating										

OR				
11 (a)	Apply database trigger for insertion and updating a records	6M	20CS303.3	L3
11 (b)	What are null values? How DBMS deals with null values?	6M	20CS303.3	L2
12 (a)	Explain third and fourth normal forms with example	6M	20CS303.4	L2
12 (b)	Explain Indexed sequential access method	6M	20CS303.4	L2
OR				
13 (a)	Explain trivial and non trivial dependencies	6M	20CS303.4	L2
13 (b)	What is lossless join decomposition? Explain the same with the example	6M	20CS303.4	L2

14 (a)	Explain in detail about a transaction and its properties	6M	20CS303.5	L2
14 (b)	Identify two phase locking for ensuring serializability	6M	20CS303.5	L3
OR				
15 (a)	Apply ARIES algorithm for system crash recovery	6M	20CS303.5	L3
15 (b)	Explain different recovery techniques used in transaction failure	6M	20CS303.5	L2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	CSE, CSE (AI \& ML) \& CSE (DS)		Academic Year	2020-2021
Course Code	20CS304	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Object Oriented Programming through C++				III	

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)	Learning Outcome (s)	DoK
1	Define variable and reference variable	20 CS304.1	L1
2	Give the properties of a static member variable	20 CS304.2	L2
3	What is the difference between a constructor and destructor	20 CS304.3	L2
4	Define pure virtual function	20 CS304.4	L1
5	Write difference between Templates \& Macros	20 CS304.5	L1

Part B (Long Answer Questions $5 \times 12=60$ Marks)

No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Write differences between POP \& OOP	6 M	20 CS 304.1	L1
6 (b)	Explain principles of object oriented programming	6 M	20 CS 304.1	L2

OR

7 (a)	What are I/O manipulators? Explain the following I/O Stream functions with suitable examples i) width() ii) precision() iii) seff() iv) unseff() v) fill() vi) endl	7M	20 CS 304.1	L2
7 (b)	Write a program in C++ to find the GCD between two numbers using recursion	5 M	20 CS 304.1	L3
8 (a)	With an example explain the syntax for defining a class \& object	6 M	20 CS 304.2	L2
8 (b)	How the member function can be defined inside class and outside the class? Explain	6 M	20 CS 304.2	L2

OR

What is function overloading? Write a C++ program to define two

9 (a)	overloaded functions to swap two integers and to swap two characters	6 M	20 CS 304.2	L3
9 (b)	Explain the friend function with example	6 M	20 CS 304.2	L2

10 (a)	Explain the constructors with example	6 M	20 CS 304.3	L2
10 (b)	What is operator overloading? Write a C++ program illustrating aver	6 M	20 CS 304.3	L3

11 (a)	Write a C^{++}program to implement single inheritance with public access specific	6M	20CS304.3	L3
11 (b)	Explain about the multiple inheritance with example	6M	20CS304.3	L2
12 (a)	What is a pointer? How to declare a pointer to a class and an object?	5M	20CS304.4	L1
12 (b)	With an example explain how late binding can be achieved in $\mathrm{C}++$	7M	20CS304.4	L2
OR				
13 (a)	Explain the abstract class with example	6M	20CS304.4	L2
13 (b)	Write a C++ program that illustrates exception handling with the help of keywords: try, throws and catch	6M	20CS304.4	L3
14	What is STL? Briefly explain the use of containers, vectors, lists	12M	20CS304.5	L2
OR				
15 (a)	What are class templates? How are they different from classes?	5M	20CS304.5	L1
15 (b)	Write a program to create a template function for bubble sort and demonstrate the sorting of integers and characters	7M	20CS304.5	L3

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	CSE, CSE (AI \& ML) \& CS (DS)	Academic Year	2021-2022	
Course Code	$20 C S 305$	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	COMPUTER ORGANIZATION				III	

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	Convert the hexadecimal number F3A7C2 to binary and octal		20CS305.1	L1
2	What is the need of RTL language?		20CS305.2	L2
3	What are the different stack operations?		20CS305.3	L1
4	Perform the arithmetic operations below with binary numbers and with negative numbers in signed 2's complement. Use seven bit to accommodate each number together with its sign - $35+-40$		20CS305.4	L2
5	What is virtual memory?		20CS305.5	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Represent the decimal number 8620 in (i) BCD (ii) Excess-3 (iii) 2421 (iv) Binary number	6M	20CS305.1	L2
6 (b)	Construct a 3×8 decoder with two 2×4 decoders	6M	20CS305.1	L1
	OR			
7 (a)	With a neat sketch explain 4-bit synchronous binary counter "Parity checking can be used for error detection"-Justify your answer with an example	6M	20CS305.1	L2
7 (b)		6M	20CS305.1	L1
8 (a)	Starting from an initial value of $\mathrm{R}=11011101$, determine the sequence of binary values in T after a logical shift left , followed by a logical shift right and circular shift left	5M	20CS305.2	L2
8 (b)	Explain various phases of instruction cycle with an example	OR		
9 (a)	Explain the following with neat sketches (i) 4-bit binary adder-subtractor (ii) 4 -bit binary decrementer using full adder circuits	5M	20CS305.2	L2
9 (b)	Explain memory-reference instructions. Draw the flow chart for memory-reference instructions	7M	20CS305.2	L2
10 (a)	What do you mean by addressing mode? Explain the following addressing modes with examples (i) Direct addressing mode (ii) Immediate addressing mode	8M	20CS305.3	L2
10 (b)	Explain about microprogram sequencer for a control memory	4M	20CS305.3	L2
	OR			
11 (a)	Explain about stack organization Explain address sequencing mechanism in microprogrammed control	5M	20CS305.3	L2
11 (b)		7M	20CS305.3	L2
12 (a)	What are the steps involved in the addition of 2's complement notation. Explain with an example	6M	20CS305.4	L2
12 (b)	Explain Booth multiplication algorithm with an example	6M	20CS305.4	L2
	OR			
13 (a)	Explain the multiplication of positive numbers using array multiplier with a neat sketch	6M	20CS305.4	L2
13 (b)	Perform floating point addition using the numbers 0.5 and 0.4375 use the floating point addition algorithm	6M	20CS305.4	L2

14 (a)	Discuss the possible methods for specifying the placement of memory blocks in cache	7M	20CS305.5	L1
14 (b)	Explain in detail DMA transfer in a computer system	5M	20CS305.5	L2
OR				
15 (a)	What is the difference between isolated I/O and memory mapped I/O? What are the advantages and disadvantages of each?	6M	20CS305.5	L2
15 (b)	Explain address mapping using pages	6M	20CS305.5	L2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	CSE (DS)		Academic Year	2021-2022
Course Code	20DS302	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Foundations of Data Science				III	

Part A (Short Answer Questions 5×2 = 10 Marks)

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	EEE \& ECE		Academic Year	2021-2022
Course Code	20EC302	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Electronic Devices and Circuits					III

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	What is diffusion capacitance?		20EC302.1	L1
2	List out any three application of SCR		20EC302.2	L1
3	Give the classification of filters		20EC302.3	L1
4	Write a short note on (i)Thermal Runaway (i)Thermal stability		20EC302.4	L1
5	Define ripple factor		20EC302.5	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	Dok
6 (a)	Questions (6 through 15) Derive the current diode equation	6M	20EC302.1	L2
6 (b)	What is the P-N junction? Discuss the behavior of a P-N junction under forward and reverse bias	6M	20EC302.1	L2
OR				
7 (a)	Describe the current components in P-N diode What is the effect of temperature on P-N junction diode?	6M	20EC302.1	L2
7 (b)		6M	20EC302.1	L2
8 (a)	Describe a Zener diode. Distinguish between Zener breakdown and avalanche breakdown	6M	20EC302.2	L2
8 (b)	Draw the equivalent circuit of UJT and discuss its working from the circuit	6M	20EC302.2	L2
OR				
9 (a)	With neat diagram describe the operation of bridge rectifier	6M	20EC302.2	L2
9 (b)	Explain the operation of (i) Inductor filter (ii) capacitor filter	6M	20EC302.2	L2
10 (a)	Explain the mechanism of current flow in PNP and NPN transistor Sketch the family of CE output characteristics for a transistor. Explain cutoff, active, saturation region	5M	20EC302.3	L2
10 (b)		7M	20EC302.3	L2
OR O O				
11 (a)	Define α and β of a transistor and derive the relationship between them	5M	20EC302.3	L2
11 (b)	Sketch a family of CB output characteristics for a transistor. Explain cutoff, active, saturation region	7M	20EC302.3	L2
12 (a)	Obtain an expression of stability factor for fixed bias	5M	20EC302.4	L2
12 (b)	Derive the expression of for stability factor for self bias of JFET	7M	20EC302.4	L2
OR				
13 (a)	With suitable expressions explain self bias of BJT Explain about Thermistor and Sensistor bias compensation techniques	6M	20EC302.4	L2
13 (b)		6M	20EC302.4	L2
14 (a)	Investigate the h-parameters of common drain amplifier	7M	20EC302.5	L2
14 (b)	Discuss the analysis of small signal model of JFET	5 M	20EC302.5	L2
OR				
15 (a)	Give the comparison of BJT,JFET and MOSFET	4M	20EC302.5	L1
15 (b)	Analyze the h-parameters of common base amplifier	8M	20EC302.5	L2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ECE			Academic Year
2021-2022						
Course Code	20EC303	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Signals and Systems					III

Part A (Short Answer Questions $5 \times 2=10$ Marks)			
No.	Questions (1 through 5)	Learning Outcome (s)	DoK
1	Define signal and check whether ramp function is even or not	20EC303.1	L1
2	What is the Fourier transform of the impulse function $\delta(t)$	20EC303.2	L1
3	Develop the relations between convolution and correlation	20EC303.3	L3
4	Define Signal bandwidth and System bandwidth	20EC303.4	L1
5	Find the Z-transform of the sequence $u[n]$	20EC303.5	L3

Part B (Long Answer Questions $5 \times 12=60$ Marks)

No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	List the different types of systems and explain with an example	6 M	20EC303.1	L1
6 (b)	For given the following signals find the periodicity of the signals and its fundamental period. a) $x(t)=\sin 10 \pi t+\cos 15 \pi t+20 \cos (20 \pi t+\pi / 4)$ b) $x(t)=\sin (3 \pi / 5)$ t.	$6 M$	20EC303.1	L2

7 (a)	Check whether the following signals are Energy or power Signals. Justify your answer i) $x(t)=e-4 t u(t), a>0$ ii) $x(t)=1$ rect $(+2)$	6M	20EC303.1	L2
7(b)	Define and sketch the unit step function and signum function. Bring out the relation between these two functions	6M	20EC303.1	L1
8(a)	Develop the expression for mean square error using the expression of a function using orthogonal signal space	6M	20EC303.2	L3
8 (b)	Write and derive the necessary expression to represent the function $f(t)$ using Trigonometric Fourier Series	6M	20EC303.2	L1
OR				
9 (a)	State and prove any five properties of Fourier Transform	6M	20EC303.2	L2
9 (b)	Find the exponential Fourier series for the following periodic function.	6M	20EC303.2	L3

10 (a)	Perform the convolution of the two sequences $x[n]=\{3,2,1,2\}$ and $h[n]=\{1,2,1,2\}$	6M	20EC303.3	L3
10 (b)	Explain and define cross correlation function, write its properties and prove any two of them	6M	20EC303.3	L4
OR				
11 (a)	Analyse and State Parseval's theorem for energy / power signals	6M	20EC303.3	L4
11 (b)	Perform the convolution of $\mathrm{h}(\mathrm{t})=\mathrm{e}-$ atu(t) and $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{b})$	6M	20EC303.3	L3

12 (a)	What are the requirements to be satisfied by an LTI system to provide distortionless transmission of a signal?	6M	20EC303.4	L2
12 (b)	Obtain the output $y(t)$ for the given input $x(t)$ and the impulse response $h(t)$ of a continuous time LTI system are given by $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})$, $h(t)=e-a t u(t), a>0$	6M	20EC303.4	L4
OR				
13 (a)	A discrete LTI system describe by difference equation is given by $y[n]+3 y[n-1]+2 y[n-2]=2 x[n]-x[n-1]$ and given $\begin{aligned} & y(-1)=0 \& y(-2)=1, \\ & x(n)=u(n) \end{aligned}$ Obtain i) Zero input Response ii) Zero State Response iii) Total Response	6M	20EC303.4	L4
13 (b)	Illustrate the ideal LPF, HPF and BPF characteristics	6M	20EC303.4	L2
14 (a)	Obtain the Z-transform of $\mathrm{x}(\mathrm{n})=-\operatorname{anu}(-\mathrm{n}-1)$	6M	20EC303.5	L4
14 (b)	State and prove time shifting and time convolution properties of z - transform	6M	20EC303.5	L2
OR				
15 (a)	Obtain the Laplace transform of the following signals i) Impulse function ii) unit step function iii) AsinwOt $u(t)$	6M	20EC303.5	L4
15 (b)	State and Prove the initial and final value theorem of Laplace transform	6M	20EC303.5	L2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ECE		Academic Year	2021-2022
Course Code	20EC304	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Random Variables and Stochastic Process			III		

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)							Learning Outcome (s)	Dok
1	Write axioms of Probability							20EC304.1	L1
2	Define Random Variable							20EC304.2	L1
3	Define Marginal Distribution Function							20EC304.3	L1
4	What is Autocorrelation Function							20EC304.4	L1
5	Define Band Pass Process							20EC304.5	L1
Part B (Long Answer Questions $5 \times 12 \mathbf{6 0}$ Marks)									
No.	Questions (6 through 15)						Marks	Learning Outcome (s)	Dok
6 (a)	$\{-1,-0.5,0.7,1.5,3\}$. The corresponding probabilities are to be $\{0.1,0.2,0.1,0.4,0.2\}$. Plot its distribution function and state whether it is a discrete or continuous distribution function						6M	20EC304.1	L2
6 (b)	State and Prove Bayes Theorem						6M	20EC304.1	L2
OR									
7 (a)	The p.d.f of a random variable is given by $f(x)=\operatorname{Ke}-\mathrm{axu}(\mathrm{x})$, where a is a positive constant. Determine the value of constant K						6M	20EC304.1	L2
7 (b)	Explain about the distribution and density functions of Rayleigh Random variable with neat sketches						6M	20EC304. 1	L2
8 (a)	State and prove Chebychev's inequality						6M	20EC304.2	L3
8 (b)	If X discrete is a random variable with probability mass function given as below table						6M	20EC304. 2	L3
	X		-1			2			
	$\mathrm{P}(\mathrm{X})$	1/5	2/5	1/10	1/10	1/5			
	Solve i)E[X] ii) $E\left[X^{2}\right]$ iii) $E[2 X+3]$ iv) $E\left[(2 X+1)^{2}\right]$								
OR									
9 (a)	Let $\mathrm{Y}=2 \mathrm{X}+3$, If the random variable is uniformly distributed over [-1, 2], determine fy(y)						6M	20EC304.2	L3
9 (b)	Explain about the characteristic function and state its properties						6M	20EC304.2	L2
10 (a)	State and explain the properties of joint density function						6M	20EC304.3	L3
10 (b)	If X and Y are two independent random variables, then $\emptyset_{X+r}(\omega)=\varnothing_{x}(\omega) \varnothing_{y}(\omega)$						6M	20EC304.3	L2
	OR								
11 (a)	The joint p.d.f of a bi-variate (X, Y) is given by $\boldsymbol{f}_{X Y}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x y} / 9 ; \mathbf{0}<\boldsymbol{x}<2,0<y<3$ $=0$; otherwise (i) Find Conditional Density functions						6M	20EC304.3	L3
11 (b)	State and prove central limit theorem for equal distributions case						6M	20EC304.3	L3

12 (a)	Explain briefly about time average and Ergodicity	6M	20EC304.4	L2
12 (b)	Derive the relationship between power spectral density and autocorrelation function	6M	20EC304.4	L4
OR				
13 (a)	Explain how random processes are classified with neat sketches	6M	20EC304.4	L2
13 (b)	A wide sense stationary process $X(t)$ has autocorrelation function $R_{x}(T)=A e^{-b T l}$ where $b>0$. Derive the power spectral density function	6M	20EC304.4	L4
14 (a)	A random processes $X(t)=A \sin (\omega t+\theta)$, where A, ω are constants and θ is a uniformly distributed random variable on the interval $(-\pi, \pi)$.find average power?	6M	20EC305.5	L2
14 (b)	Derive the relation between input PSD and output PSD of an LTI system	6M	20EC304.5	L4
OR				
15 (a)	Explain the following i) Noise Figure ii) Noise Sources	6M	20EC304.5	L2
15 (b)	Derive the expression for average cross power between two random process $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$	6M	20EC304.5	L4

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ECE		Academic Year	2021-2022
Course Code	20EC305	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Digital System Design					III

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	Represent -41 in singed magnitude		20EC305.1	L1
2	State Duality theorems		20EC305. 2	L1
3	Write the steps involved in the design of a combinational circuit		20EC305.3	L1
4	Write the differences between Asynchronous and Synchronous Counter		20EC305.4	L1
5	Define Design Flow		20EC305.5	L1
Part B (Long Answer Questions $5 \times 12 \mathbf{6 0}$ Marks)				
No.	Questions (6 through 15) Convert the following (i) $9 \mathrm{AC}_{16}=()_{10}$ (ii) $123_{8}=()_{10}$ (iii) $742_{10}=($ $)_{16}$	Marks	Learning Outcome (s)	DoK
6 (a)		6M	20EC305.1	L2
6 (b)	Perform the given subtraction using 1's and 2's complement methods: (101011)2-(111001)2	6M	20EC305.1	L2
OR				
7 (a)	Determine the single error correct code for the information code 10111 for odd parity	6M	20EC305.1	L2
7 (b)	(i) Convert the following binary 1010011 into gray code (ii)Convert the following gray code 101011 into its equivalent binary	6M	20EC305.1	L2
8 (a)	(i)Simplify the following three variable expression using Boolean algebra $Y=\Sigma m(1,3,5,7)$ (ii) Simplify the expression $Y=(A+B)\left(A^{\prime}+C\right)\left(B^{\prime}+C^{\prime}\right)$	6M	20EC305. 2	L2
8 (b)	Solve the given expression using consensus theorem $A^{\prime} B^{\prime}+A C+B C^{\prime}+B^{\prime} C+A B$	6M	20EC305.2	L2
OR				
9 (a)	Convert the given expression in canonical SOP form $f(A, B, C)=A C+A B+B C$	6M	20EC305. 2	L2
9 (b)	Minimize the following function using Karnaugh map technique $f(A, B, C, D)=\sum_{m}(5,6,7,12,13)+\sum_{d}(4,9,14,15)$	6M	20EC305.2	L2
10 (a)	Design the full adder using two half adders	6M	20EC305.3	L3
10 (b)	Design a 4-bit Parallel adder/subtractor circuit	6M	20EC305.3	L3
	OR			
11 (a)	Design a 2 Bit Magnitude Comparator using gates Show and implement the following function using a PROM$\begin{aligned} & \mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum_{m}(1,9,12,15) \\ & \mathrm{G}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum_{m}(0,1,2,3,4,5,7,8,10,11,12,13,14,15) \end{aligned}$	6M	20EC305.3	L3
11 (b)		6M	20EC305.3	L3
12 (a)	Explain the working of JK Flip Flop	6M	20EC305.4	L2
12 (b)	Explain the Conversion of SR Flip Flop to T Flip Flop	6M	20EC305.4	L2
OR				
13 (a)	Explain the working of Ring Counter	6M	20EC305.4	L2
13 (b)	Explain the working of Shift Register	6M	20EC305.4	L2

14 (a)	Explain the program structure of VHDL and Explain the significance of entity and architecture	6M	20EC305.5	L2
14 (b)	Explain the behavioral design style of VHDL programming with suitable example	6M	20EC305.5	L2
OR				
15 (a)	Describe the dataflow design style of VHDL programming with suitable example	6M	20EC305.5	L4
15 (b)	List and discuss various data types in VHDL with examples	6M	20EC305.5	L4

Semester End Examination, January/February, 2022
$\left.\begin{array}{|l|l|l|l|l|l|c|}\hline \text { Degree } & \text { B. Tech. (U. G.) } & \text { Program } & \text { EEE } & & \text { Academic Year } & \text { 2021-2022 } \\ \hline \text { Course Code } & \text { 20EE303 } & \text { Test Duration } & 3 \text { Hrs. } & \text { Max. Marks } & 70 & \text { Semester }\end{array}\right]$ III

Part A (Short Answer Questions $5 \times 2=10$ Marks)
No. Questions (1 through 5) Learning Outcome (s) Dok

1 A sine wave has a peak value of 12 V . Determine the RMS, Average value and \quad 20EE303.1
2 What is complex impedance? \quad 20EE303.2 L1
3 State the Superposition theorem 20EE303.3 L2
4 Write the condition for symmetry and reciprocity with reference to y and $h \quad$ 20EE303.4 \quad L2

Part B (Long Answer Questions $5 \times 12=60$ Marks)
No. Questions (6 through 15) Marks Learning Outcome (s) DoK
6 (a) Discuss the principle of Duality with an example
6M 20EE303.1 L2

Use nodal analysis to determine V_{1} and power being supplied by dependent current source in the circuit shown in figure 2(b)

6 (b)

Figure 2(b)
6M 20EE303.1 L3

6M	20EE303.1	L2

6M 20EE303.1

A series RLC circuit consists of a resistance of 25Ω inductance 0.4 H ,
8 (a) capacitance of $250 \mu \mathrm{~F}$ is connected a supply of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the total impedance, current, power, power factor, voltage across coil and capacitance
8 (b) Prove that in a pure inductive circuit the active power supplied over a complete cycle averages out to Zero.

OR
Determine the equivalent impedance of the network shown in Figure if the operating frequency is $5 \mathrm{rad} / \mathrm{s}$

9 (a)

A balanced 3- phase, 3-wire $50 \mathrm{~Hz}, 100 \mathrm{~V}$ supply is given to a load
9 (b) consisting of three impedances $(1+j 1),(1+j 2),(3+j 4)$ ohms connected in

10 (a)	Find the value of R in the circuit shown in figure such that maximum power transfer takes place. What is the amount of this power?	7M	20EE303.3	L3
10 (b)	State and explain Norton's theorem	5M	20EE303.3	L1
OR				
11 (a)	Find the voltage across 10Ω resistance using superposition theorem	7M	20EE303.3	L3
11 (b)	What is maximum power transfer theorem? Explain it.	5M	20EE303.3	L3
12 (a)	Find the y-parameters of the network shown in below figure	7M	20EE303.4	L3
12 (b)	Explain about Y-parameters of a two-port network	7M	20EE303.4	L2
OR				
13 (a)	Find the transmission parameters of the following two port network:	6M	20EE303.4	L3
13 (b)	Explain the interrelationships between Z-parameters in terms of ABCD - parameters for a two-port network	6M	20EE303.4	L2
14 (a)	In the following network the switch s is open and steady state is reached. At $t=0, S$ is closed. Find $i_{L}(t)$ for $t>0$.	7M	20EE303.5	L3
14 (b)	Determine the DC response of RL and RC circuit and sketch the voltage transients	5M	20EE303.5	L2
OR				
15 (a)	The circuit shown in figure consists of series RL elements. The sine wave is applied to the circuit when the switch is closed at $\mathrm{t}=0$. Determine the current $i(t)$	6M	20EE303.5	L3

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	EEE			Academic Year
2021-2022						
Course Code	20EE304	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	DC MACHINES \& TRANSFORMERS					III

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	What is a doubly-excited magnetic system? Mention two examples		20EE304.1	L1
2	What are the two functions of a commutator in dc machines?		20EE304.2	L1
3	What is the difference between 3-point and 4-point starter?		20EE304.3	L1
4	Distinguish between step-up and step-down transformers		20EE304.4	L2
5	Explain why OC test is performed on LV side of a single phase transformer		20EE304.5	L2
Part B (Long Answer Questions $5 \times 12 \mathbf{6 0}$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	For a singly excited magnetic system, derive the expression for the magnetic energy stored in terms of reluctance	6M	20EE304.1	L2
6 (b)	Find expression for magnetic force developed in a doubly-excited translational magnetic system	6M	20EE304.1	L2

OR

7 (a) Derive expressions of field energy, co energy and magnetic force in a singly excited electromechanical unit
7 (b) Explain the concept of energy in magnetic system with neat diagram

$6 M$	20EE304.1	L2
$6 M$	20EE304.1	L2

8 (a) Explain construction of DC machine with the help of neat diagram An 8 pole lap wound armature having 40 slots with 12 conductors/ slot
8 (b) generates 500 V . Determine speed at which machine is running if the flux per pole is 50 mWb

OR

9 (a) | Explain demagnetizing \& cross magnetizing effects of armature |
| :--- |
| reaction |

9 (b) Draw the internal and external characteristics of different types of DC generators and explain them

20EE304. 2

A dc motor takes an armature current of 110 A at 480 V . The armature
circuit resistance is 0.2Ω. The machine has 6 -poles and the armature is Lap-connected with 864 conductors. The flux per pole is 0.05 Wb .
6M 20EE304.3 L3 Calculate: i. The speed ii. The gross torque developed by the armature

OR
11 (a) Draw different characteristics of shunt, series and compound motors and explain them
11 (b) Explain the procedure of conducting brake-test on DC machine with a neat circuit diagram

6 M	20EE304.3	L2
6 M	20 EE 304.3	L 2

12 (a)	Discuss the working principle of single-phase transformer and also explain the constructional details
12 (b)	The voltage per turn of a single-phase transformer is 1.1 V . When the primary winding is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{A.C}. \mathrm{supply} the$, secondary voltage is found to be 550 V. Find: i) Primary and secondary turns ii) Core area if the maximum flux density is $1.1 \mathrm{~Wb} / \mathrm{m}^{2}$

$7 M$	20EE304.4	L2
$6 M$	20EE304.4	L3

13 (a)	Derive an EMF equation for transformer with usual notation	6 M	20EE304.4	L3
13 (b)	Draw and explain the phasor diagram of single phase transformer on	6 M	20EE304.4	L2
	load considering with winding resistance			

	configurations			
OR				
15 (a)	A $10 \mathrm{kVA}, 500 / 250 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer gave the following test data: OC Test (LV side): $250 \mathrm{~V}, 1.0 \mathrm{~A}, 80 \mathrm{~W}$ SC Test (HV side): $25 \mathrm{~V}, 12 \mathrm{~A}, 100 \mathrm{~W}$ Where LV refers to the low voltage and HV refers to high voltage side. Determine the following: (i) Equivalent circuit referred to LV side (ii) Secondary load voltage at 0.8 p.f. lagging with full-load current	7M	20EE304.5	L3
15 (b)	Derive an expression for the saving of copper in an autotransformer as compared to an equivalent two winding transformer	5M	20EE304.5	L2

Semester End Examination, January/February, 2022
$\left.\begin{array}{l|l|l|l|l|l|l|}\hline \text { Degree } & \text { B. Tech. (U. G.) } & \text { Program } & \text { EEE } & & & \text { Academic Year } \\ \text { 2021-2022 } \\ \hline \text { Course Code } & \text { 20EE305 } & \text { Test Duration } & \text { 3 Hrs. } & \text { Max. Marks } & 70 & \text { Semester }\end{array}\right]$ III

Part A (Short Answer Questions $5 \times 2=10$ Marks)
No. Questions (1 through 5) Learning Outcome (s) DoK
1 Define the function of economizer and condenser 20EE305.1 L1

2 Define Tariff \& list types of tariff methods 20EE305.2 L1
3 Explain the importance of ACSR conductor 20EE305.3 L2
4 What is meant by skin effect \& Ferranti effect 20EE305.4 L1

5	List the types of insulators used in transmission	20EE305.5

Part B (Long Answer Questions $5 \times 12=60$ Marks)
No. Questions (6 through 15)
6 (a) Draw a neat schematic diagram of thermal power plant and explain its operation
6 (b) Draw the layout of Hydro power plant, selection of site and briefly explain the main components in hydro power station

OR
7 (a) Draw a neat schematic diagram of Nuclear power plant and explain its operation
7 (b) Compare the characteristics of Thermal, Hydro \& Nuclear power plants

Marks	Learning Outcome (s)	DoK
6M	20EE305.1	L2
6M	20EE305.1	L2

8 (a) i) Load factor ii) Diversity factor iii) Plant capacity factor
iv) Plant use factor v) Utilization factor vi) Spinning Reserve A power station has maximum demand of 15000 KW , the Annual load factor is 50%, plant capacity factor is 40%. Determine the following
i) Annual energy produced
ii) Installed capacity of plant
iii) Reserve capacity of plant
iv) Utilization factor

OR

Explain the cost of generation of electrical energy with respect to fixed
9 (a) cost, Semi-fixed cost and operating cost. Also comment on how load factor \& diversity factor influence the cost of generation
9 (b)
Explain briefly the following types of tariffs in electrical system. i) twopart tariff ii) power factor tariff iii) Block rate part tariff
6M

20EE305.2 L1

6 M	20EE305.2	L2
6 M	20EE305.2	L 2

Discuss the concepts of self GMD and mutual GMD by deriving the equations of transmission lines
The three conductors of a 3-phase line are arranged at the corners of a triangle of sides $2 \mathrm{~m}, 2.5 \mathrm{~m}$ and 4.5 m . Calculate the inductance per km of the line when the conductors are regularly transposed. The diameter of each conductor is 1.24 cm

OR

11 (a) Analyze the capacitance of a single phase Two-wire line.
A 3-phase, $50 \mathrm{~Hz}, 132 \mathrm{kV}$ overhead line has conductors placed in a horizontal plane 4 m apart. Conductor diameter is 2 cm . If the line length is 100 km , calculate the charging current per phase assuming complete transposition

Derive the $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ constants of the Medium transmission lines by using Nominal- π method
A 3-phase, 50 Hz transmission line 100 km long delivers 20 MW at 0.9
12 (b) p.f. lagging and at 110 kV . The resistance and reactance of the line per

	admittance is $2.5 \times 10-6$ siemen $/ \mathrm{km} / \mathrm{phase}$. Calculate : (i) the current and voltage at the sending end (ii) efficiency of transmission. Use nominal T method			
OR				
13 (a)	Describe the effect of power factor on efficiency and regulation	5M	20EE305.4	L2
13 (b)	3 -phase line delivers 3600 kW at a p.f. 0.8 lagging to a load. If the sending end voltage is 33 kV , determine (i) the receiving end voltage (ii) line current (iii) transmission efficiency. The resistance and reactance of each conductor are $5 \cdot 31 \Omega$ and 5.54Ω respectively	7M	20EE305.4	L3
14 (a)	Derive the expression for the Sag in horizontal plane when the conductor is covering ice and wind pressure	6M	20EE305.5	L2
14 (b)	A transmission line has a span of 200 metres between level supports. The conductor has a cross-sectional area of $1.29 \mathrm{~cm}^{2}$, weighs 1170 $\mathrm{kg} / \mathrm{km}$ and has a breaking stress of $4218 \mathrm{~kg} / \mathrm{cm}^{2}$. Calculate the sag for a safety factor of 5 , allowing a wind pressure of 122 kg per square metre of projected area. What is the vertical sag?	6M	20EE305.5	L3
OR				
15 (a)	Explain the role of guard ring in improving the string efficiency	5M	20EE305.5	L2
15 (b)	A 3-phase transmission line is being supported by three disc insulators. The potentials across top unit (i.e., near to the tower) and middle unit are 8 kV and 11 kV respectively. Calculate (i) the ratio of capacitance between pin and earth to the self-capacitance of each unit (ii)the line voltage and (iii) string efficiency	7M	20EE305.5	L3

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ME		Academic Year	2021-2022
Course Code	20 ME302	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Thermodynamics					
III						

Part A (Short Answer Questions $5 \times 2=10$ Marks)				
No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	Define state, process and cycle		20ME301.1	L1
2	Define specific heat and enthalpy		20ME301.2	L2
3	What is Gibb's function?		20ME301.3	L2
4	Define Dryness Fraction		20ME301.4	L1
5	Define dry and wet bulb temperature		20ME301.5	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	Dok
6 (a)	What is a thermodynamic system? Explain different classes of systems with suitable examples	6M	20ME301.1	L2
6 (b)	Compare macroscopic and microscopic approaches in thermodynamic studies	6M	20ME301.1	L2
OR				
7 (a)	Show that work is a path function and not a property	5M	20ME301.1	L2
7 (b)	A mass of 1.5 kg of air is compressed in a quasi-static process from 0.1 MPa to 0.7 MPa for which $\mathrm{pv}=$ constant. The initial density of air is $1.16 \mathrm{~kg} / \mathrm{m}^{3}$. Find the work done by the piston to compress the air	7M	20ME301.1	L3
8 (a)	Write down the general equation for steady flow systems and simplify when applied for the following systems: (a) Steam turbine (b) Steam nozzle (c) Centrifugal compressor (d) Condenser	10M	20ME301.2	L3
8 (b)	Define the first law of thermodynamics	2M	20ME301.2	L1
OR				
9 (a)	A heat engine receives heat at the rate of $1500 \mathrm{~kJ} / \mathrm{min}$ and gives an output of 8.2 kW . Determine: (i) The thermal efficiency. (ii) The rate of heat rejection	8M	20ME301.2	L3
9 (b)	Define internal energy and prove that it is a property of the system	4 M	20ME301.2	L2
10 (a)	Establish the equivalence of Kelvin- Planck and Clausius statements	6M	20ME301.3	L2
10 (b)	Discuss about Carnot theorem with neat diagram	6M	20ME301.3	L2

OR

A reversible heat engine operates between two reservoirs at temperatures of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 40 ${ }^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. The heat transfer to the engine is 2000 kJ and the net
11 (a) work output of the combined engine-refrigerator plant is 360 kJ .
(i) Evaluate the heat transfer to the refrigerant and the net heat transfer to the reservoir at $40^{\circ} \mathrm{C}$.
(ii) Reconsider (i) given that the efficiency of the heat engine and the COP of the refrigerator are each 40% of their maximum possible value.
11 (b) Explain about heat engine and heat pump
20ME301.3

A mass of wet steam at temperature $165^{\circ} \mathrm{C}$ is expanded at constant quality 0.8 to pressure 3 bar. It is then heated at constant pressure to a degree of superheat of $66.5^{\circ} \mathrm{C}$. Find the enthalpy and entropy changes during expansion and during heating. Draw the $\mathrm{T}-\mathrm{s}$ and $\mathrm{h}-\mathrm{s}$ diagrams Explain about phase transformation and various properties involved during phase change

OR				
13 (a)	A rigid vessel of capacity $0.2 \mathrm{~m}^{3}$ holds 10 bar steam at $250{ }^{\circ} \mathrm{C}$. The vessel is slowly cooled till the steam pressure drops to 3.5 bar. Determine the (i) final temperature and dryness fraction of steam; (ii) change in entropy	7M	20ME301.4	L3
13 (b)	Sketch the H-S and P-T diagram of a pure substance	5M	20ME301.4	L2
14 (a)	Explain about adiabatic mixing of perfect gases	5M	20ME301.5	L2
14 (b)	A mixture of hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$ is to be made so that ratio of H_{2} to O_{2} is $2: 1$ by volume. If the pressure and temperature are 1 bar and 25 respectively, calculate: (i) The mass of O_{2} required. (ii) The volume of the container	7M	20ME301.5	L3
OR				
15 (a)	State van-der-Waals equation of state	6M	20ME301.5	L1
15 (b)	Explain the following i) Heating and humidification ii) Cooling and dehumidification	6M	20ME301.5	L2

Semester End Examination, January/February, 2022

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	ME		Academic Year	2021-2022
Course Code	20 ME304	Test Duration	3 Hrs.	Max. Marks	70	Semester
Course	Mechanics of Solids					III

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	Define the elasticity and plasticity		20ME303.1	L1
2	Differentiate the point load, UDL and VDL		20ME303.2	L1
3	$\mathrm{M} / \mathrm{I} / \mathrm{f} / \mathrm{y}=\mathrm{E} / \mathrm{R}-\mathrm{justify}$		20ME303.2	L2
4	What is pure torsion?		20ME303.2	L1
5	Define buckling and stability		20ME303.1	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Draw a neat stress- strain curve diagram of stainless steel and explain	6M	20ME303.2	L2
6 (b)	A hollow cylinder 2000 mm long has an outside diameter of 50 mm and inside diameter of 30 mm . If the cylinder is carrying a load of 20 kN , find the stress and elongation when the modulus of elasticity is 100 Gpa	6M	20ME303.2	L2

A steel bar of 20 mm diameter is acted upon by the forces. What is the elongation of the bar when young's modulus, $\mathrm{E}=210 \mathrm{GPa}$. Find net elongation by principal of super position

7 (a)

The stresses on two perpendicular planes through a point in a body are 100 MPa (Tensile) and 60 MPa (Compression). Determine the normal 7 (b) and tangential stress on a plane at an angle 30° with the vertical (ACW). Draw configuration and Mohr's diagrams

8 (a) Write about the types of beams

OR

uniformly distributed and variably distributed loads applied
A cantilever beam 4 m long carries a VD, $2 \mathrm{kN} / \mathrm{m}$ at the free end to 5
kN / m at the fixed end and draw SFD and BMD

9 (b)

B 2 kN

10 (a) Write the sign convention of shear force and bending moment of VDL

6M	20ME303.2	L2
$6 M$	20ME303.3	L2

OR

11 (a)	The simply supported beam is 5 m carries a point load 4 kN at a distance of 1.5 m from left where the UDL of $2 \mathrm{kN} / \mathrm{m}$ starts from point load for 1 m . Find the reactions and draw the SFD and BMD	6M	20ME303.3	L4
11 (b)	Derive the equations for simply supported beam with UVL	6M	20ME303.2	L2
12 (a)	Derive equation for moment of inertia for a rectangular section	5M	20ME303.2	L2
12 (b)	Derive an equation for torsion	7M	20ME303.2	L2
(b) OR				
13 (a)	A cantilever beam of span L is subjected to a concentrated load W at a distance 'a' from fixed end. Find the deflection of free end	5M	20ME303.2	L2
13 (b)	Explain the Macaulay's method in deflection of beams	7M	20ME303.3	L2
14 (a)	Explain the buckling	6M	20ME303.2	L3
14 (b)	Derive Euler's formula	6 M	20ME303.2	L2
OR				
15 (a)	What is a circumferential and longitudinal stress	5M	20ME303.2	L2
15 (b)	Differentiate thin and thick cylinders	7M	20ME303.2	L2

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	Mechanical Engineering		Academic Year	2021-2022
Course Code	20ME304	Test Duration	3 Hrs.	Max. Marks 70	Semester	III
Course	MANUFACTURING PROCESS					

Part A (Short Answer Questions $5 \times 2=10$ Marks)

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	What are the advantages casting?		20ME304.1	L1
2	Explain the steel making processes		20ME304.2	L2
3	How do you classify the welding processes?		20ME304.3	L2
4	Describe briefly about forge welding		20ME304.4	L1
5	Write a note on thread rolling process		20ME304.5	L1
Part B (Long Answer Questions $5 \times 12=60$ Marks)				
No.	Questions (6 through 15) Explain steps involved in a casting process with a neat sketch Explain type of patterns and also explain any three patterns with a neat sketch	Marks	Learning Outcome (s)	DoK
6 (a)		6M	20ME304.1	L2
6 (b)		6M	20ME304.1	L1
OR				
7 (a)	Explain injection molding and blow molding What steps are involved in the preparation of a Casting? Explain briefly the die casting process	6M	20ME304.1	L2
7 (b)		6M	20ME304.1	L1
8 (a)	Explain with the help of a neat sketch explain the construction and working of Cupola furnace	6M	20ME304.2	L2
8 (b)	How is upsetting different from fullering in forging?	6M	20ME304.2	L2
OR				
9 (a)	How do you compare forged components with cast components?	6M	20ME304.2	L2
9 (b)	Explain the two types of crucible furnaces with diagrams	6M	20ME304.2	L2

10 (a)	Explain the advantages and applications of oxy-acetylene welding.	7M	20ME304.3	L2
10 (b)	What are the parameters that control the weld quality in manual metal-arc welding?	5M	20ME304.3	L2
OR				
11 (a)	Explain the TIG systems of arc-welding give the applications of each	6M	20ME304.3	L2
11 (b)	Explain the MIG systems of arc-welding give the applications of each	6M	20ME304.3	L2
12 (a)	Describe the electro slag welding process	5M	20ME304.4	L2
12 (b)	Describe the electron beam welding process	7M	20ME304.4	L2
OR				
13 (a)	What applications would require diffusion welding?	6M	20ME304.4	L2
13 (b)	Explain the term HAZ in welding and is role in the success of a weldment	6M	20ME304.4	L2
14 (a)	Explain hot rolling operations through (i) t wo high (ii) three high and (iii) four high rolling mill	7M	20ME304.5	L1
14 (b)	Write a note on thread rolling process	5M	20ME304.5	L2
OR				
15 (a)	Enumerate the typical applications of cold working	4M	20ME304.5	L1

15 (b) Explain the various methods available for blow molding of thermoplastics giving their relative applications

