NSRIT Autonomous

SEMESTER END EXAMINATION MODEL QUESTION PAPERS

Titte

TIII

IIII

IIII

1111

IIII

IIII

m

Third Semester B. Tech.

> ACADEMIC Regulation 2020

> > www.nsrit.edu.in

		Se	mester End Exam	ination, J	anuary/Februa	ary, 20)22		
Degree		B. Tech. (U. G.)	Program	CSE (A	I & ML)		Academic Year	2021 -	2022
Course	Code	20AI302	Test Duration	3 Hrs.	Max. Marks	70	Semester		
Course		Artificial Neural	Networks						
Dart A /	Short A	nswer Questions 5	v 2 = 10 Marks)						
No.		ons (1 through 5)	$\mathbf{X} \mathbf{Z} = 10 \text{ marks}$				Learning Outo	come (s)	DoK
1		y four features of hu	man brain and ANN				20AI302		L1
2		s the significance of					20AI302		L1
3		are perceptron?					20AI302		L1
4		s generalization in A	NN?				20AI302		L1
5		y two applications of		v			20AI302		L1
Part B (nswer Questions 5		•			I		
No.		ons (6 through 15)	· · · ·			Mark	s Learning Outo	come (s)	DoK
6 (a)	Descri	be the function of bio	logical neuron and	human bra	ain	6M	20AI302	2.1	L1
6 (b)	Descri	be the function of art	ificial neuron and ar	tificial neu	ral network	6M	20AI302	2.1	L1
				OR					
7 (a)	Explair	n any 6 terminologies	s of ANN			6M			L1
7 (b)	Write a	about any 6 activation	n functions			6M	20AI302	2.1	L1
8		n McCulloh Pitts neu ical operations	ron and its function	is and its i	mplementation	121	A 20AI302	2.2	L2
				OR					
9		n the functioning of operations	Hebbian network a	nd its impl	ementation for	121	1 20AI302	2.2	L2
10	Evolai	n least mean square	algorithm			121	/ 20AI302) 2	L2
10	слрыш	niedst niedni square	agonann	OR		121	2041302		
11	Explair	n perceptron converg	ence theorem	UN		121	/ 20AI302	23	L2
	Explain					121	20/1002		
12	With r networ	necessary diagrams [•] k	and algorithms, e	xplain bac	ck propagation	121	/I 20AI302	2.4	L2
				OR					
13 (a)	Write a	about the limitations	of back propagation	network		6M	20AI302	2.4	L2
13 (b)	Descri	be convolution netwo	orks			6M	20AI302	2.4	L2
14 (a)		be hetero associative				6M			L2
14 (b)	Explair	n the training algorith	m for auto-associat		у	6M	20AI302	2.5	L2
				OR					
15		n the functioning of ectural diagram and it		ociative m	emory with its	121	A 20AI302	2.5	L2

Degree	e F	3. Tech. (U.				anuary/Februa E & MECH		Academic Year	2021 -	2022
Course		20BSX13	, .	Duration	3 Hrs.	Max. Marks		Semester		
Course			Methods & T						•	
	•		ons 5 x 2 = 1() Marks)				Loorning Outo	omo (o)	Del
No. 1		s (1 through iteration for		ton-Ranhson	method	and Secant met	hod	Learning Outo 20BSX1	• •	DoK L1
					method		nou	20BSX1		L2
2	Prove that	t ∆= VE								
3	Write Sim	ipson's one-	-third rule					20BSX1		L1
4	Evaluate	L{(t - 1) ³	u(t-1)}					20BSX13	3.4	L2
5		-	ale property of		sforms			20BSX1	3.5	L1
			ons 5 x 12 = 6	0 Marks)						
No.		s (6 through		aamanuta a r	a al raat a	f the equation	Marks	Learning Outo	come (s)	DoK
6 (a)	Ū	U		·	eai 100[(of the equation		20BSX1	3 1	L2
0 (a)	xe ^x - 2 =	0, correct to	three decima	l places.			6M	200381	J. I	
6 (b)			•			wton-Raphson	6M	20BSX1	3.1	L3
	methoù, (ree decimal pl	aces, near X	= 0.5. OR					
	Find a r	eal root of th	ne equation		•					
7 (a)			·	v = 1 h v c v		approximation		20BSX1	3 1	L2
					ICCESSIVE	approximation	6M	2000/10	0.1	LZ
			ur decimal pla equations by (tal matha	4.				
7 (b)			x + 20y - z = -18			J.	6M	20BSX1	3.1	L3
. /	, 2x -3y +		-							
8 (a)	F ,11	Δ^2	$\Delta^2 \sin(x+h)$					20BSX1	3.0	L3
8 (a)	Evaluate	$\frac{1}{E}$ sin(x + n)	$\frac{\Delta^2 \sin{(x+h)}}{E \sin{(x+h)}}$				6M	2000/1	J.Z	LJ
	Using La	agrange's in	terpolation for	mula, find th	ie value o	f y when x =				
0 (1)	10, if the	e following v	alues of x and	l y are given:	:			0000144	.	
8 (b)			6 9	11			6M	20BSX1	3.2	L2
			13 14	16						
		I			OR					
	l leina th	e method o	f separation o	fsymbole or	ove that					
	Using th			i symbols, pi						
		$+u_{2}+u_{3}+$								
9 (a)	(n+1)	C.11 (1	1 + 1)C₂Δι	(n+1)	$(-\Lambda^2)$	-	6M	20BSX1	32	L3
	(n+1)	-1"0 (ε i 1)c ₂ Δι	*0 (n 1	JC34 0	0		2000/11	.	
	6-	+1)c	An,,							
	+	ι+1)C _n	-1 ⁻¹ ^u 0							
	Find the	number of	students who	obtained ma	rks betwe	en 40 and 45				
9 (b)	Marks	30-40	40-50	50-60	60-70	70-80	6M			
- (-)	No. of	31	42	51	35	31	2	20BSX1	3.2	L2
	studen	ts								

10 (a)	Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} dx$ by Trapezoidal and Simpson's 3/8 th rule, by dividing the interval (0, 6) into 6 parts	6M	20BSX13.3	L2
10 (b)	y' = xy + 1, y(0) = 1 solve using Taylor's series method and $y(0.1)$	6M	20BSX13.3	L3
	OR			
11 (a)	Evaluate $\int_0^1 \frac{1}{1+x} dx$ by Simpson's $\frac{1}{3}$ rd and Simpson's $\frac{3}{8}$ th rule	6M	20BSX13.3	L2
11 (b)	Using Runge-Kutta 4th order method, evaluate $y(0.1)$ and $y(0.2)$ given that $y^1 = x + y$, $y(0) = 1$.	6M	20BSX13.3	L3
12 (a)	Show that $\int_{0}^{\infty} t^{2} e^{-4t} \sin 2t dt = \frac{1}{250}$	6M	20BSX13.4	L3
12 (b)	Using convolution theorem, evaluate $L^{-1} \left\{ \frac{s^2}{(s^2+a^2)(s^2+b^2)} \right\}$	6M	20BSX13.4	L2
	OR			
13 (a)	Evaluate $L\left\{\frac{cosat-cosbt}{t} + t sinat\right\}$	6M	20BSX13.4	L2
13 (b)	Solve $\mathbf{y}'''(t) + \mathbf{y}(t) = 1$, if $\mathbf{y}(0) = \mathbf{y}'(0) = 0$ using transform method.	6M	20BSX13.4	L3
14 (a)	Find the Fourier Transform of $f(x) = e^{\frac{-x^2}{2}}$	6M	20BSX13.5	L3
14 (b)	Find the Fourier cosine transform of $f(x) = \begin{cases} x, for \ 0 < x < 1 \\ 2 - x, for \ 1 < x < 2 \\ 0, for \ x > 3. \end{cases}$	6M	20BSX13.5	L2
	OR			
15 (a)	Find the Fourier Transform of $f(x) = \begin{cases} 1, -1 < x < 1 \\ 0, otherwise \end{cases}$	6M	20BSX13.5	L2
15 (b)	Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$.	6M	20BSX13.5	L3

			mester End Exami		anuary/Febru	ary, 20			
Degree		B. Tech. (U. G.)	Program	ECE			Academic Year	2021 -	
Course		20BSX14	Test Duration	3 Hrs.	Max. Marks	70	Semester		
Course		Complex Variab	es & Transforms						
Part A	(Short A	nswer Questions	5 x 2 = 10 Marks)						
No.	Questi	ons (1 through 5)					Learning Outco	ome (s)	DoK
1	Write t Polar F		ann (C – R) Equatio	ons in Ca	rtesian form ar	nd in	20BSX14	.1	L1
2	Expan	d $f(z) = sinz$	in Taylor's series al	bout <u>z</u> =	$\frac{\pi}{4}$.		20BSX14	.2	L2
3	Write t	he Euler's formulae					20BSX14	.3	L2
4	Find La	aplace Transform o	$(t^2 + 1)^2$				20BSX14	.4	L1
5	Write t	he Dirichlet's Cond	tions				20BSX14	.5	L1
		nswer Questions	5 x 12 = 60 Marks)			-			
No.	Questi	ons (6 through 15)				Mark	s Learning Outco	ome (s)	DoK
6 (a)		2	dz with C: $ z =$	2 using	g Cauchy's	6M	20BSX14	.1	L3
	-	Il formula le regular function v	vhose imaginary pa	rt is					
6 (b)	v = 1	$\log(x^2 + y^2) + $	x - 2y			6M	20BSX14	.1	L2
				OR					
7 (a)	Evalua $y = x$	-) <i>dz</i> along the path	(i) y =	$oldsymbol{x}$ and (ii)		20BSX14	l.1	L2
7 (b)			$z) = \sqrt{ xy }$ is not Riemann equations	•		6M 6M	20BSX14	l.1	L3
8 (a)	Find th $z = i$		on of $f(z) = \frac{2z^3}{z^2}$.	+1 + <i>z</i> abo	ut the point	6M	20BSX14	.2	L2
8 (b)	Find th	e residue of $\frac{z^2}{(z+1)^2}$	$\frac{-2z}{(z^2+1)}$ at each po			6M	20BSX14	.2	L3
	F last <i>U</i>		warden of the f	OR					
9 (a)		-	expansion of the fur $\frac{1}{2}$ in the region 3 <		< 5.	6M	20BSX14	.2	L2
9 (b)		$\int_{c} \frac{z-3}{z^{2+2z+5}} dz$ $ = 1, (ii) z + 1$, where c is the cir 1 - i = 2	cle given	by	6M	20BSX14	.2	L3
. /		z - 1, (ii) = 2.	ι ι _Ι – Δ,						

10 (a)	Obtain the Fourier series for the function $f(x) = e^{ax}$ in $(0, 2\pi)$	6M	20BSX14.3	L2
10 (b)	Find the half range series for $f(x) = x(\pi - x)$, in $0 < x < \pi$. Deduce that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$	6M	20BSX14.3	L3
	OR			
11 (a)	Expand the function $f(x) = x^2$ as a Fourier series in $[-\pi, \pi]$.	6M	20BSX14.3	L2
11 (b)	Find the Fourier series to represent $f(x) = x^2$, when $-2 \le x \le 2$.	6M	20BSX14.3	L3
12 (a)	Find Laplace Transform of e^{2t} (3 sinh2t - 5 cosh2t)	6M	20BSX14.4	L2
12 (b)	Show that $\int_0^\infty t^2 e^{-2t} sin2t dt = \frac{11}{500}$.	6M	20BSX14.4	L3
	OR			
13 (a)	Using Laplace transform method solve $(D^2 + 1)y = 6 \cos 2t, t > 0.$	6M	20BSX14.4	L2
13 (b)	Using Convolution theorem find $L^{-1}\left\{\frac{1}{(S-2)(S+2)^2}\right\}$	6M	20BSX14.4	L3
14 (a)	Using Fourier integral then show that $e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin\lambda x d\lambda}{(\lambda^2 + a^2)(\lambda^2 + b^2)},$ where a, b > 0.	6M	20BSX14.5	L2
14 (b)	Find the Fourier Sine and Cosine transform s of $f(x) = \frac{e^{-ax}}{x} \text{ and deduce that}$ $\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} \operatorname{sinsxdx} = \tan^{-1} \frac{s}{a} - \tan^{-1} \frac{s}{b}.$	6M	20BSX14.5	L3
	OR		1	1
15 (a)	Find the Fourier transform of $f(x)$ defined by $f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases}$ and hence find $\int_0^\infty \frac{sinp}{p} dp$ and $\int_{-\infty}^\infty \frac{sinap \ cospx}{p} dp$	6M	20BSX14.5	L2

	Find the Fourier transform of $f(x)$ defined by				
15 (b)	$f(x) = \begin{cases} 1 - x^2, & \text{if } x < 1\\ 0, & \text{if } x > 1 \end{cases}$	6M	20BSX14.5	L3	
	and hence find $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$.				

Degree		B. Tech. (U. G.)	Program		E (AI & ML) & CSE	(DS)	Academic Year	2021	- 2022
Course	Code	20BSX16	Test Duration	3 Hrs.	Max. Marks	70	Semester		III
Course	ļ	Mathematical Fo	undations for Co	omputer S	Science				
	(Ol A	0	5 40 M l)						
	1	nswer Questions	$5 \times 2 = 10$ Marks)				Loorning Outoo	ma (a)	Dok
No. 1		ons (1 through 5) e Tautology. Explai	n with truth table a	and suitab			Learning Outcor 20BSX16.2		Dok L1
		e that the relation				set of			
2	intege					361 01	2000/10.2	-	
3	-	Division Algorithm					20BSX16.3	3	Ľ
		the first two terms	s in the sequer	ice define	ed by the recu	irrence	20BSX16.4		L
4		on a _n =6a _{n-1} with			,				
5		e cycle graph , write			5		20BSX16.5	5	Ľ
Part B	(Long A	nswer Questions &	5 x 12 = 60 Marks	;)					
No.		ons (6 through 15)		,		Marks	Learning Outcor	ne (s)	DoK
6 (0)	Defin	e converse, inverse	and contra positi	ve with tru	th table and	6M	20BSX16.	1	L
6 (a)		le example				OIVI	2003/10.		
6 (b)	Write	the truth table P	$\rightarrow (Q \rightarrow R)$			6M	20BSX16.	1	L
				OR					
7 (a)		Obtain the Disjunctiv				6M	20BSX16.1	1	L
. ()		btain the Conjunct				•		·	
		that the hypothese							
7 (h)		der than yesterday				GM	2000016	1	L
7 (b)		/", " If we do not g and "If we take a				6M	20BSX16.	I	L
		et" lead to the concl							
	ounoc			nonio by	cuncer				
	Write	the matrix repres	sentation and c	lirected g	raph of the				
8 (a)	relatio	on on the set A= {	1,2,3,4} where F	R= { (1,1),	(1,2), (2,1),	6M	20BSX16.2	2	L
		(2,4), (3,3), (3,1), (4							
8 (b)	Cons	truct the Hasse dia	gram of ({1,2,3,4,6	5,8,12}, div	vides(/))	6M	20BSX16.2	2	L
0(0)						UN	2000/10.2		
				OR					
			$(1 \ 2 \ 3)$	4)					
		= {1, 2, 3, 4} and le	. 2 1 4	3					
9 (a)	Let S	$= \{1, 2, 3, 4\}$ and le	et f = \	> and	g =	6M	20BSX16	2	L3
		2 3 4							
	4	1 2 3 Find f	∘ g and g ∘ f in th	o normuta	ation form				
	Defin	e group and prove l							
9 (b)		integers			ian group in	6M	20BSX16	2	L2
10 (a)	State	and prove Euler's t	heorem. Give an	example		6M	20BSX16	3	L2
		that for all integers			bc (ii) if alb				1.0
10 (b)		b c then a c for all				6M	20BSX16	3	L3
				OR					
11 (a)	State	e and prove Fermat	t's theorem			6M	20BSX16	3	L2
11 (b)	Find t	he gcd of 42823 ar	nd 6409 usina Euc	lidean alo	orithm	6M	20BSX16	3	L3
(0)						UNI	2000/10	0	LU
	Eind f	he particular solutio		a valation					
12 (a)							20BSX16		

12 (b)	Solve the recurrence relation an -2 an-1 - 3 an-2 = 0, n>= 2 by the generating function method a0 = 3, a1 = 1	6M	20BSX16.4	L2
	OR			
13 (a)	Find all solutions of the recurrence relation $a_n=5a_{n-1}-6a_{n-2}+7^n$	6M	20BSX16.4	L2
13 (b)	Find the explicit formula for the Fibonacci numbers	6M	20BSX16.4	L3
14 (a)	Explain about the bipartite and complete bipartite Graphs with diagrams	6M	20BSX16.5	L3
14 (b)	Show that the following two graphs are isomorphic G1 G2	6M	20BSX16.5	L2
	OR			
15 (a)	Define Eulerian circuit and Hamiltonian circuit, give an example of graph that has neither an Eulerian circuit nor Hamiltonian circuit	6M	20BSX16.5	L2
15 (b)	Explain kruskal's algorithm to find minimal spanning tree of the graph with suitable example	6M	20BSX16.5	L3

Semester End Examination, January/February, 2021

Degre		B. Tech. (U. G.)	Program		gineering		Academic Year	2021 –	2022
	se Code	20CE302	Test Duration	3 Hrs.	Max. Ma	rks 70	Semester	III	
Cours	se in the second se	Building Planni	ng And Drawing						
Part A	A (Short A	nswer Questions	14 x 3 = 42 Mark	s)					
No.	Question	s (1 through 5)				Marks	Learning Outco	ome (s)	DoK
	Draw the	e following sign	conventions brick	, plywoo	d, sheet				
1(a)	metal, c Pump, u	•	nanhole, showerh	ead, Wa	shbasin,	7 M	20CE302	.1	L1
1(b)	Draw rou	igh sketch for eng	lish bond for 1 $\frac{1}{2}$ b	rick wall		7 M	20CE302		L1
2(a)	Describe	the principle and	necessity of buildi	ng bye-la	WS	7 M	20CE302	.2	L2
2(b)	· ·	xplain the provision of height of buildings and requireme ghting & ventilation as per building bye-law /rite classification of buildings and explain each of them					20CE302	.2	L2
3(a)	Write cla	ssification of build	ings and explain e	ach of th	em	7 M	20CE302	.3	L2
3(b)	Discuss bedroom		requirements of ki	tchen an	d master	7 M	20CE302	.3	L3
4(a)	Explain t	he different feature	es of a queen post	roof trus	S	7 M	20CE302	.4	L3
4(b)			etween flush and			7 M	20CE302	.4	L3
5(a)	Draw the	layout for the hos	pital building	•		7 M	20CE302	.5	L3
5(b)	Explain i building	n detail with nea	t sketch about pla	anning o	fa bank	7 M	20CE302	.5	L3
Part E	B (Long Ai	nswer Questions	1 x 28 = 28 Marks	s)					
No.	Question	s (6 through 7)				Marks	Learning Outco	ome (s)	DoK
6(a)	Draw the 1.2 X2.1	•	al elevation of a gl	azed doo	or of size	14 M	20CE302	.4	L4
6(b)		e detailed elevatio n. Indicate all feat	n of a king post i ures.	roof trus	s of 6 m	14 M	20CE302	.4	L4
				OR					
7		UITABLE dimension	4.5 × 5.0 W TOILET V D 2.5 × 2.0 W BED ROOM 4.5 × 5.0 W 0 RAWING HALL 0 D1 - 0.75 × 2.10 × 1.20 W1 - 0.45 × 1.20			28 M	20CE302	.5	L4

Degree		B. Tech. (U. G.)	Program		ngineering		Academic Year	-	- 2022
Course	e Code	20CE303	Test Duration	3 Hrs.	Max. Marks	70	Semester		
Course	;	SURVEYING							
Part ∆	(Short A	nswer Questions {	5 x 2 = 10 Marks)						
No.		ons (1 through 5)					Learning Outcor	ne (s)	DoK
1		s the object or purpo	ose of surveying?				20CE303.1		L1
2		s its back bearing?	, ,				20CE303.2		L1
3		s mean by line of co	llimation and heigh	nt of collin	nation?		20CE303.3	3	L1
4	List the	e essential qualities	of a theodolite tele	scope			20CE303.4	1	L1
5	What a	are the functions of a	a transition curve?				20CE303.5	5	L1
Part B	(Lona A	nswer Questions 5	x 12 = 60 Marks)						
No.	• –	ns (6 through 15)				Marks	Learning Outcor	ne (s)	DoK
6		letailed classificatio	n of Surveys			12 M	20CE303.1		L2
	0.100.0			OR				•	
7 (a)	Illustra	te the errors in surv	ev measurements			6M	20CE303.1	1	L1
r (u)			•	a after ch	aining 1800	0111	2002000.		
7 (b)	m. It w total c	A 30 m chain was found to be 3 cm too long after chaining 1800 m. It was 9 cm too long at the end of day's work after chaining a total distance of 3000 m. If the chain was correct before commencement of the work, find the true distance						1	L1
0						4014	0005000	`	
8	Descri	be the field procedu	re of compass surv			12M	20CE303.2	2	L2
	list s	it the tenenerous a	ad namaanant ad:	OR	of a loval				
9 (a)	State t	it the temporary a he desired relation	S			6M	20CE303.2		L1
9 (b)	What is	s local attraction? H	ow is it detected ar	nd elimina	ated?	6M	20CE303.2	2	L1
10 (a)	Draw t parts	he neat sketch of o	dumpy level and e	explain its	component	6M	20CE303.3	3	L1
10 (b)	Differe	ntiate between the d	fixed hair metho	d and m	ovable hair	6M	20CE303.3	3	L1
				OR	I				1
11		ntiate between the netry. Discuss their			methods of	12M	20CE303.3	3	L1
12	theodo the cas reading was 3.	oservations were ta lite, the reduced le se of the first, the ar g 0.75. In the case 45 and the angle of f the staff station an	vel of its trunnion and ngle of elevation was of second observation 5°48'. C	axis being as 4°36' a tion, the s Calculate the instru	g 160.95. In and the staff staff reading the reduced	12M	20CE303.4	1	L1
				OR					
13 (a)	metho	about the Total Sta ds of surveying				6M	20CE303.4	1	L2
13 (b)		te the methods of a thod with a neat sk		curves?	Explain any	6M	20CE303.4	1	L2
14 (a)	List ou	t in detail the parts of	of theodolite			6M	20CE303.5	5	L1
14(b)		n the permanent adj		ite		6M	20CE303.5		L1
(v)+i	слріан	i ale permanent duj		OR			200000	,	L I

15 (a)	What are different types of vertical curves? Draw neat sketches	6M	20CE303.5	L2
15 (b)	Describe the procedure for setting out simple circular curve with a tape and a theodolite	6M	20CE303.5	L2

Degree	B. Tech. (U.G.)	Program	Civil E	ngineering		Academic Year	2021 - 2022
Course Code	20CE304	Test Duration	3 Hrs.	Max. Marks	70	Semester	
Course	Strength of Ma	aterials					

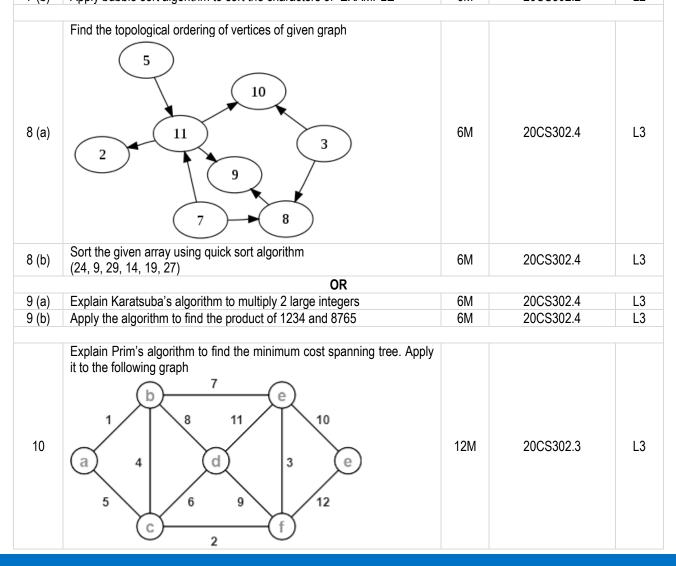
No.	Short Answer Questions 5 x 2 = 10 Marks) Questions (1 through 5)		Learning Outcome (s)	Dok
1	Draw the stress strain diagram for mild steel subjected to tensile load	1 toct	20CE304.1	L1
2	Define the terms (i) Bending stress (ii) Shear stress		20CE304.1	L1
2	Define the terms (i) Slope (ii) Deflection for a beam		20CE304.2	L1
4	Define (i) Slenderness ratio (ii) Radius of Gyration		20CE304.3	L1
5	Write the relationship between power transmitted and torque		20CE304.4	L1
	ong Answer Questions 5 x 12 = 60 Marks)			
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	Dok
6 (a)	Explain clearly the different types of stresses and strains	6M	20CE304.1	L1
6 (b)	Derive an expression for Young's modulus in terms of bulk modulus	6M	20CE304.1	L2
	OR			
7 (a)	Write note on Mohr's circle of stresses	6M	20CE304.1	L1
7 (b)	The stresses at a point in a bar are 200 N/mm ² (tensile) and 100N/mm ² (compressive). Determine the resultant stress in magnitude and direction on a plane inclined at 60 ° to the axis of the major stress. Also determine the maximum intensity of shear stress in the material at the point	6M	20CE304.1	L2
	A cast iron beam section is of I - section with a top flange 80 mm x			
8	20 mm thick, bottom flange 160 mm x 40 mm thick and the web 200 mm deep and 20 mm thick. The beam is freely supported on a span of 5 metres. if the tensile stress is not to exceed 20 N/mm ² .find the safe uniformly distributed load which the beam can carry. Find also the maximum compressive stress	12M	20CE304.2	L3
	OR			
9 (a)	Find the section modulus for (i) hollow circular section (ii) circular section	6M	20CE304.2	L2
9 (b)	Find the ratio of maximum shear stress to average shear stress is 1.5 in case of rectangular section	6M	20CE304.2	L3

10 (a)	Write and explain Moment area theorems	6M	20CE304.3	L1
10 (b)	Derive an expression for the slope and deflection of a Simply supported beam with a uniformly distributed load	6M	20CE304.3	L2
	OR			
11 (a)	Derive an expression for the slope and deflection of a cantilever of length L, carrying a point load W at free end by double integration method	6M	20CE304.3	L2
11 (b)	A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of 9 kN/ m run over the entire span of 5 m. the value of E = 1 x 10^4 N/mm ² , find the slope at support and and maximum deflection	6M	20CE304.3	L3
12 (a)	Derive an expression for crippling load when both ends of the column are hinged	6M	20CE304.4	L2

12 (b)	A simply supported beam of length 4 metres is subjected to uniformly distributed load of 30 kN/m over the whole span and deflects 15 mm at the centre. Determine the crippling loads when the beam is used as column with the following conditions. I. One end fixed and other end hinged II. Both the ends pin jointed	6M	20CE304.4	L3
	OR			
13(a)	A hollow cylindrical cast iron column is 4 m long with both ends fixed. Determine the minimum diameter of the column if it has to carry a safe load of 250 kN with a factor of safety. Take the internal diameter as 0.8 times the external diameter Take $\sigma_c = 550 \text{ N/mm}^2$ and $\alpha = \frac{1}{1600}$ in Rankine's formula	8M	20CE304.4	L3
13(b)	A rectangular column of Width 200 mm and of thickness 150 mm carries a point load of 240kN at an eccentricity of 10 mm determine the maximum and minimum stresses on the section	4M	20CE304.4	L3
14	Derive the Torsion equation	12M	20CE304.5	L2
	OR			
15(a)	Explain clearly the different types of springs and their applications	6M	20CE304.5	L1
15(b)	Write short note on thin cylinders and thick cylinders	6M	20CE304.5	L1

Semester End Examination, January/February, 2022

Course	Fluid Mechanic	S					
Course Code	20CE305	Test Duration	3 Hrs.	Max. Marks	70	Semester	
Degree	B. Tech. (U. G.)	Program	Civil En	ngineering	Academic Year	2020 - 2021	


Part A (Short Answer Questions 5 x 2 = 10 Marks)

Part A	(Short Answer Questions 5 x 2 = 10 Marks)			
No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	Define Specific Gravity		20CE305.1	L1
2	State Pascal's Law		20CE305.2	L1
3	Write the two expressions for 2-dimensional stream function		20CE305.3	L1
4	What is Buoyancy?		20CE305.4	L1
5	What are the forces acting on fluid in motion according to equations?	Euler's	20CE305.5	L1
Part B	(Long Answer Questions 5 x 12 = 60 Marks)		1	
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Write about velocity potential function	6M	20CE305.1	L2
6 (b)	What is Flow Net?	6M	20CE305.1	L1
. ,	OR	1		
7 (a)	State and explain Bernoulli's equation	6M	20CE305.1	L3
7 (b)	State and explain the equation of continuity	6M	20CE305.1	L2
		_		
8 (a)	What is the principle involved in the functioning of Venturimeter?	6M	20CE305.2	L2
8 (b)	What is the Principle involved in the functioning of Orifice meter?	6M	20CE305.2	L3
	OR	1		
9 (a)	What are the types of fluid flow?	6M	20CE305.2	L3
9 (b)	Define any two types of fluid flow	6M	20CE305.2	L2
10 (a)	What is total pressure?	6M	20CE305.3	L3
10 (b)	Derive the expression for total pressure for a vertical plane surface submerged in liquid	6M	20CE305.3	L2
	OR			
11 (a)	Explain the equation of continuity in 3 dimensions	6M	20CE305.3	L3
11 (b)	State how this equation changes for an Incompressible fluid	6M	20CE305.3	L2
(-)		•		
12 (a)	State the Laws of fluid friction	6M	20CE305.4	L2
	Explain in detail the Darcy-Weisbach equation	6M	20CE305.4	L2
()	OR			
13	Explain in detail about Kaplan turbine with a neat diagram	12M	20CE305.4	L2
14	What are the performance characteristics of a turbine? Explain geometric similarity	12M	20CE305.5	L2
	OR	1	1	
15 (a)	Write in detail about Laminar boundary layer and turbulent boundary layer	6M	20CE305.5	L2
15 (b)	Write about the development of lift in immersed bodies	6M	20CE305.5	L2

Course	Design and Ana	lysis of Algorith	ms				
Course Code	20CS302	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Degree	B. Tech. (U. G.)	Program	CSE, CSE	(AI & ML) & CS	E (DS)	Academic Year	2021 - 2022

Part A (Short Answer Questions 5 x 2 = 10 Marks) Questions (1 through 5) Learning Outcome (s) DoK No. Define time complexity and space complexity 20CS302.1 1 L1 2 State Master theorem 20CS302.2 L1 3 Write the general method of dynamic programming 20CS302.3 L2 4 What are NP Hard problems? 20CS302.4 L1 5 Write the general principle of branch and bound technique 20CS302.3 L2 Part B (Long Answer Questions 5 x 12 = 60 Marks) No. Questions (6 through 15) Marks Learning Outcome (s) DoK 6 (a) Describe the asymptotic classes. Give example 6M 20CS302.2 L2 Write the recursive algorithm to find factorial of given number and 6 (b) 6M 20CS302.2 L2 analyze its time complexity OR 20CS302.2 L2 7 (a) Write the String-matching algorithm. Explain it with example 6M 7 (b) Apply bubble sort algorithm to sort the characters of "EXAMPLE" 6M 20CS302.2 L2

	OR			
11 (a)	Design a dynamic programming based algorithm to solve 0/1 knapsack problem. Apply it solve the following problem N=5, W=6, weight vector = (3,2,1,4,5), cost vector = (25,20,15,40,50)	12M	20CS302.3	L3
12 (a)	Describe approximation algorithms for NP-Hard graph problems	12M	20CS302.5	L2
	OR			
13 (a)	State and describe Cook's theorem	6M	20CS302.5	L2
13 (b)	Explain NP Complete problems with examples	6M	20CS302.5	L2
14 (a)	Describe the least-cost based branch and bound strategy	4M	20CS302.3	L2
14 (b)	Solve the following problem by designing an algorithm using appropriate design strategy There are 4 jobs that are to be assigned to 4 persons a, b, c, d. The cost involved in assignment is given below. Find the optimal assignment $C = \begin{bmatrix} 9 & 2 & 7 & 8\\ 6 & 4 & 3 & 7\\ 5 & 8 & 1 & 8\\ 7 & 6 & 9 & 4 \end{bmatrix} $ person <i>a</i> person <i>b</i> person <i>c</i> person <i>d</i>	8M	20CS302.4	L3
	OR			
15 (a)	State n-Queen's problem statement	4M	20CS302.3	L2
15 (b)	Generate at least 2 solutions to 8-Queen's problem and draw its state- space tree	8M	20CS302.4	L3

Degree		B. Tech. (U. G.)	Program	CSE, CS	E (AI & ML) & CS	SE (DS)	Academic Year	2021	- 2022	
Course	Code	20CS303	Test Duration	3 Hrs.	Max. Marks	70	Semester		III	
Course		Database Mana	gement System							
Part A (No. 1 2 3	Quest List ou What	Answer Question ions (1 through 5) it four Database a is entity relation co it all commands in	pplications onstraint	(S)			Learning Outcom 20CS303.1 20CS303.2 20CS303.3		DoK L1 L1 L1	
4	What	is Normalization?					20CS303.4		L1	
5		e durability and ato					20CS303.5		L1	
	-	nswer Questions		ˈks)					.	
No.		ions (6 through 15				Marks	Learning Outcom	e (s)	DoK	
6 (a)	•	are file system wi				6M	20CS303.1		L2	
6 (b)	Explain the symbols used to draw ER diagram and construct ER diagram for hospital				6M	20CS303.1		L2		
- ()				OR		<u> </u>			• -	
7 (a)		What is a data base model? Explain any two of them				6M	20CS303.1		L2	
7 (b)	Explai	n architecture of	DBMS with neat	diagram		6M	20CS303.1		L2	
8	Explain different join operation in relational algebra					12M	20CS303.2		L2	
9 (a)	What is view? Explain commands for performing view operations					6M	20CS303.2		L2	
9 (b)		n any four ope				6M	20CS303.2		L2	
10 (a) 10 (b)	An ins 1. \ t 2. I	n Nested queries tance of sailors re SID SNAME 18 Jones 41 Jonah 22 Ahab 63 Mobay Write SQL query to he sum of the ra using COUNT f you divide sum of be same as the av	RATINGAGE330.0656.9744.0Null15.0co compute the aviting, using SUMcomputed above I	verage ratir and num	ber of ratings would be result	6M 6M	20CS303.3 20CS303.3		L2 L3	
11 (a) 11 (b) 12 (a) 12 (b) 13 (a)	i Apply What Explai Explai	he above steps w nstead of rating database trigger fr are null values? H n third and fourth n Indexed sequen n trivial and non tr	or insertion and u ow DBMS deals w normal forms wi tial access metho	OR pdating a r with null va th example od OR	records lues?	6M 6M 6M 6M	20CS303.3 20CS303.3 20CS303.4 20CS303.4 20CS303.4		L3 L2 L2 L2 L2	
		is lossless join de			same with the	6M	20CS303.4		L2	
13 (b)	examp	•	-			IVIO	2005303.4		LZ	

14 (a)	Explain in detail about a transaction and its properties	6M	20CS303.5	L2
14 (b)	Identify two phase locking for ensuring serializability	6M	20CS303.5	L3
	OR			
15 (a)	Apply ARIES algorithm for system crash recovery	6M	20CS303.5	L3
15 (b)	Explain different recovery techniques used in transaction failure	6M	20CS303.5	L2

Degree	;	B. Tech. (U. G.)	emester End Exa Program		(AI & ML) & CSE		Academic Year	2020	- 2021
Course		20CS304	Test Duration	3 Hrs.	Max. Marks	70	Semester		
Course	•	Object Oriented	Programming t	hrough C+	+				
	•	nswer Questions	5 x 2 = 10 Marks)					ma (a)	Del
No.		ons (1 through 5)	anaa variahla				Learning Outcor		DoK
1		variable and refer		ichlo			20CS304.1 20CS304.2		L1 L2
2		e properties of a s the difference be			tructor		20CS304.2 20CS304.3		L2 L2
3 4				tor and des	ITUCION		20CS304.3		LZ L1
5		pure virtual functi difference betwee		oroc			20CS304.5		L1
		nswer Questions					2003304.0)	L I
No.		ons (6 through 15		(3)		Marks	Learning Outcor	no (s)	DoK
6 (a)		lifferences betwee				6M	20CS304.1		L1
6 (b)		n principles of obje		ammina		6M	20CS304.1		L2
0(0)	слріан		et onented progra	OR		UNI	2000304.	I	LZ
	What	are I/O manipula	ators? Evolain th	-	1 I/O Stream				
7 (a)		ns with suitable ex				7M	20CS304.1	1	L2
r (a)		i() ii) precision() iii		v) fill() vi) e	ndl	7 101	2000304.	1	
		a program in C+-							
7 (b)		ecursion		5 5000001		5M	20CS304.1	1	L3
	uonigi	oouroion							
8 (a)	With a	n example explain	the syntax for de	fining a clas	s & object	6M	20CS304.2)	L2
		With an example explain the syntax for defining a class & object How the member function can be defined inside class and outside							
8 (b)		ss? Explain				6M	20CS304.2	2	L2
				OR					
	What i	s function overloa	ding? Write a C+	-	to define two				
9 (a)		aded functions to				6M	20CS304.2	2	L3
()	charac		I	0	•				
9 (b)	Explair	n the friend functio	n with example			6M	20CS304.2	2	L2
. ,	· ·				I				1
10 (a)	Explair	the constructors	with example			6M	20CS304.3	3	L2
	What	s operator overlo	ading? Write a	C++ progra	m illustrating	GM	20002204 2)	1.2
10 (b)	overloa	ading binary '+' op	erator		-	6M	20CS304.3	0	L3
				OR					
11 (a)	Write a	a C++ program to	implement singl	e inheritanc	ce with public	6M	20CS304.3	2	L3
11 (a)		specific				UNI			
11 (b)	Explair	n about the multipl	e inheritance with	example		6M	20CS304.3	3	L2
12 (a)		s a pointer? Hov	v to declare a po	pinter to a	class and an	5M	20CS304.4	1	L1
	object?								
12 (b)	With a	n example explain	how late binding		ieved in C++	7M	20CS304.4	1	L2
				OR		<i>c</i> -			-
13 (a)		the abstract clas				6M	20CS304.4	1	L2
13 (b)		a C++ program th		eption hand	dling with the	6M	20CS304.4	1	L3
	help of	keywords: try, thr	ows and catch						
					,	4011	0000001	-	
14	What is	s STL? Briefly exp	lain the use of co		ctors, lists	12M	20CS304.5)	L2
45 ()		an alara (1.1.	0.11	OR		~ • •	0000004	-	14
15 (a)		ire class template				5M	20CS304.5)	L1
15 (b)		program to creat			ble sort and	7M	20CS304.5	5	L3
- (~)	demon	strate the sorting	of integers and ch	aracters					

~~~~

Course	COMPUTER ORC	SANIZATION					
Course Code	20CS305	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Degree	B. Tech. (U. G.)	Program	CSE, CSE	(AI & ML) & CS (Academic Year	2021 - 2022	

No.	Questions (1 through 5)		Learning Outcome (s)	Dok
1	Convert the hexadecimal number F3A7C2 to binary and octal		20CS305.1	L1
2	What is the need of RTL language?		20CS305.2	L2
3	What are the different stack operations?		20CS305.3	L1
4	Perform the arithmetic operations below with binary numbers and with numbers in signed 2's complement. Use seven bit to accommoda number together with its sign -35 + -40		20CS305.4	L2
5	What is virtual memory?		20CS305.5	L1
Part B (Long Answer Questions 5 x 12 = 60 Marks)			
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Represent the decimal number 8620 in (i) BCD (ii) Excess-3 (iii) 2421 (iv) Binary number	6M	20CS305.1	L2
6 (b)	Construct a 3 X 8 decoder with two 2 X 4 decoders	6M	20CS305.1	L1
0 (0)	OR	0111	200000.1	
7 (a)	With a neat sketch explain 4-bit synchronous binary counter	6M	20CS305.1	L2
7 (b)	"Parity checking can be used for error detection"-Justify your answer with an example	6M	20CS305.1	L1
8 (a) 8 (b)	binary values in T after a logical shift left , followed by a logical shift right and circular shift left Explain various phases of instruction cycle with an example	5M 7M	20CS305.2 20CS305.2	L2 L2
	OR			
9 (a)	Explain the following with neat sketches (i) 4-bit binary adder-subtractor (ii) 4-bit binary decrementer using full adder circuits	5M	20CS305.2	L2
9 (b)	Explain memory-reference instructions. Draw the flow chart for memory-reference instructions	7M	20CS305.2	L2
10 (a)	What do you mean by addressing mode? Explain the following addressing modes with examples (i) Direct addressing mode (ii) Immediate addressing mode	8M	20CS305.3	L2
10 (b)	Explain about microprogram sequencer for a control memory	4M	20CS305.3	L2
	OR			
11 (a)	Explain about stack organization	5M	20CS305.3	L2
11 (b)	Explain address sequencing mechanism in microprogrammed control	7M	20CS305.3	L2
12 (a)	What are the steps involved in the addition of 2's complement notation. Explain with an example	6M	20CS305.4	L2
12 (b)	Explain Booth multiplication algorithm with an example	6M	20CS305.4	L2
	OR			
13 (a)	Explain the multiplication of positive numbers using array multiplier with a neat sketch	6M	20CS305.4	L2
13 (b)	Perform floating point addition using the numbers 0.5 and 0.4375 use the floating point addition algorithm	6M	20CS305.4	Lź

14 (a)	Discuss the possible methods for specifying the placement of memory blocks in cache	7M	20CS305.5	L1
14 (b)	Explain in detail DMA transfer in a computer system	5M	20CS305.5	L2
	OR			
15 (a)	What is the difference between isolated I/O and memory mapped I/O? What are the advantages and disadvantages of each?	6M	20CS305.5	L2
15 (b)	Explain address mapping using pages	6M	20CS305.5	L2

Degree	B. Tech. (U. G.)	Program	CSE (D	S)		Academic Year	2021 - 2022
Course Code	20DS302	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Course	Foundations of	Data Science					

Part A (Short Answer Questions 5 x 2 = 10 Marks) No. Questions (1 through 5) Learning Outcome (s) DoK 1 Identify Big Data Sources 20DS302.1 L1 2 List down any four data types in Python 20DS302.2 L1 3 Distinguish training data and test data 20DS302.3 L2 4 What are the different file formats in geographic information system? 20DS302.4 L1 5 What is web-scraping? L1 20DS302.5 Part B (Long Answer Questions 5 x 12 = 60 Marks) Questions (6 through 15) Marks Learning Outcome (s) DoK No. 6 (a) Differentiate Data Science and Data Engineering 6M 20DS302.1 L2 6M 20DS302.1 6 (b) Explain 3 Vs of Big Data L1 OR 7 (a) Analyze the Pieces of Data Science puzzle 6M 20DS302.1 L2 7 (b) Explain Hadoop Architecture 6M 20DS302.1 L1 8 (a) Explain Python Data types 6M 20DS302.2 L1 Explain any four packages for Visualization, Mapping, and 8 (b) 6M 20DS302.2 L1 Graphing in R OR 9 (a) List down any six Database Normalization properties 6M 20DS302.2 L1 Explain any two applications of Knime 9 (b) 6M 20DS302.2 L1 10 (a) Explain Artificial Neural Network Model 6M 20DS302.3 L1 Explain Linear Regression Model 10 (b) 6M 20DS302.3 L1 OR 11 (a) Explain Clustering with K-Means algorithm 6M 20DS302.3 L1 11 (b) Differentiate Classification and Clustering 20DS302.3 L1 6M 12 (a) Explain the three main types of data visualization 6M 20DS302.4 L1 12 (b) Write any five applications of D3.js 6M 20DS302.4 L1 OR 13 (a) Explain any two open source applications for data visualization 6M 20DS302.4 L1 13 (b) What are the best practices for dashboard design 6M 20DS302.4 L1 14 (a) How to develop, tell, and present the story in data journalism? 6M 20DS302.5 L1 How to model Environmental Human Interactions with 14 (b) 6M 20DS302.5 L1 environmental intelligence? OR 15 (a) List any four web analytics applications 6M 20DS302.5 L1 Explain Predictive spatial models for Crime analysis 15 (b) 6M 20DS302.5 L1

Semester End Examination, January/February, 2022

Degree	B. Tech. (U. G.)	Program	EEE &	ECE		Academic Year	2021 - 2022
Course Code	20EC302	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Course	Electronic Devic	es and Circuits					

	Short Answer Questions 5 x 2 = 10 Marks)			
No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	What is diffusion capacitance?		20EC302.1	L1
2	List out any three application of SCR		20EC302.2	L1
3	Give the classification of filters		20EC302.3	L1
4	Write a short note on (i)Thermal Runaway (ii)Thermal stability		20EC302.4	L1
5	Define ripple factor		20EC302.5	L1
Part B (Long Answer Questions 5 x 12 = 60 Marks)			1
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Derive the current diode equation	6M	20EC302.1	L2
6 (b)	What is the P-N junction? Discuss the behavior of a P-N junction under forward and reverse bias	6M	20EC302.1	L2
	OR			
7 (a)	Describe the current components in P-N diode	6M	20EC302.1	L2
7 (b)	What is the effect of temperature on P-N junction diode?	6M	20EC302.1	L2
			1	
8 (a)	Describe a Zener diode. Distinguish between Zener breakdown and avalanche breakdown	6M	20EC302.2	L2
8 (b)	Draw the equivalent circuit of UJT and discuss its working from the circuit	6M	20EC302.2	L2
	OR			
9 (a)	With neat diagram describe the operation of bridge rectifier	6M	20EC302.2	L2
9 (b)	Explain the operation of (i) Inductor filter (ii) capacitor filter	6M	20EC302.2	L2
10 (a)	Explain the mechanism of current flow in PNP and NPN transistor	5M	20EC302.3	L2
10 (b)	Sketch the family of CE output characteristics for a transistor. Explain cutoff, active, saturation region	7M	20EC302.3	L2
	OR			1
11 (a)	Define α and β of a transistor and derive the relationship between them	5M	20EC302.3	L2
11 (b)	Sketch a family of CB output characteristics for a transistor. Explain cutoff, active, saturation region	7M	20EC302.3	L2
10 ()				
12 (a)	Obtain an expression of stability factor for fixed bias	5M	20EC302.4	L2
12 (b)	Derive the expression of for stability factor for self bias of JFET	7M	20EC302.4	L2
	OR			
13 (a)	With suitable expressions explain self bias of BJT	6M	20EC302.4	L2
13 (b)	Explain about Thermistor and Sensistor bias compensation techniques	6M	20EC302.4	L2
14 (a)	Investigate the h-parameters of common drain amplifier	7M	20EC302.5	L2
14 (b)	Discuss the analysis of small signal model of JFET	5M	20EC302.5	L2
. (~)	OR			
15 (a)	Give the comparison of BJT, JFET and MOSFET	4M	20EC302.5	L1
	Analyze the h-parameters of common base amplifier	8M	20EC302.5	L2

Degree	B. Tech. (U. G.)	Program	ECE			Academic Year	2021 - 2	2022	
Course (Code 20EC303	Test Duration	3 Hrs.	Max. Marks	70	Semester	II		
Course	Signals and Sys	tems							
•	Short Answer Questions)						
No.	Questions (1 through 5)					Learning Out		Dok L1	
1	Define signal and check				20EC303.1				
2	What is the Fourier tran					20EC30		L1	
3	Develop the relations b			elation		20EC30		L3	
4	Define Signal bandwidt					20EC30 20EC30		L1 L3	
5	Find the Z-transform of	the sequence u[n]				202030	3.5	LJ	
Part B (Lo	ong Answer Questions 5 x 12 =								
No.	Questions (6 through 15)			Marks	Learning Outc	ome (s)	Doł	
6 (a)	List the different types of				6M	20EC303	3.1	L1	
6 (b)	For given the following		eriodicity of	f the signals					
	and its fundamental period		4		6M	20EC303	3.1	L2	
	a) x(t)= sin 10πt+cos 15 b) x(t)= sin (3π/5)t.	πt+20cos(20πt+π/	4)		•				
	D = S = S = S = S = S = S = S = S = S =		OR						
	Check whether the fo	llowing signals a	re Energy	y or power					
- ()	Signals. Justify your ans	wer			6M	20EC303	2 1	L2	
7 (a)	i) x(t)= e-4t u(t), a	>0			OIVI	2020300	J. I	LZ	
	ii) x(t)=1rect(t/2)								
7(b)	Define and sketch the unit step function and signum function				6M	20EC303	31	L1	
1(0)	Bring out the relation be	tween these two fu	unctions		0111	2020000			
0 ()	Develop the expression	n for mean sa	Jare error	r using the	6M	20EC303	3.2	L3	
8(a)	expression of a function				•				
9 (b)	Write and derive the r				6M	20EC303	3.2	L1	
8 (b)	function f(t) using Trigon		eries	•					
	Otate and serve any fire		OR	.f		005000	2 0		
9 (a)	State and prove any fiv	e properties of Fol	urier Trans	storm	6M	20EC303	3.2	L2	
	Find the exponential F	ourier series for	the follow	vina neriodic					
	function.			ing periodic					
0 (h)	1	f(t)			6M	20EC303	3.2	L3	
9 (b)	~ 7				OIVI			LJ	
		\backslash / \backslash	/						
	-3 -2 -1 0	Y 1	} →t						
10 (a)	Perform the convolution	n of the two sequ	uences x[r	n]={3,2,1,2}	6M	20EC303	2	L3	
	and h[n]= {1,2,1,2}			- · · ·	OIVI	2020303	0.0	LJ	
10 (b)	Explain and define of		function,	write its	6M	20EC303	.3	L4	
	properties and prove any	y two of them							
11 (a)	Analyse and State Da	requal's theorem	OR	nu / nowor					
11 (a)	Analyse and State Pa signals	iisevais liieorem	ioi energ	Jy / power	6M	20EC303	3.3	L4	
11 (b)	Perform the convolution	of $h(t) = e^{-2tu(t)}$ or	nd v(t)-u/t)	-u(t_b)	6M	20EC303	13	L3	
11(0)						200000		LJ	

12 (a)	What are the requirements to be satisfied by an LTI system to provide distortionless transmission of a signal?	6M	20EC303.4	L2
12 (b)	Obtain the output y(t) for the given input x (t) and the impulse response h (t) of a continuous time LTI system are given by $x(t) = u(t)$, //tt)= e-at u(t),a>0	6M	20EC303.4	L4
	OR			
13 (a)	A discrete LTI system describe by difference equation is given by y[n]+3y[n-1]+2y[n-2]=2x[n]-x[n-1] and given y(-1)=0 & y(-2)=1 , x(n)=u(n) Obtain i) Zero input Response ii) Zero State Response iii) Total Response	6M	20EC303.4	L4
13 (b)	Illustrate the ideal LPF, HPF and BPF characteristics	6M	20EC303.4	L2
14 (a)	Obtain the Z-transform of $x(n) = -anu(-n-1)$	6M	20EC303.5	L4
14 (b)	State and prove time shifting and time convolution properties of z- transform	6M	20EC303.5	L2
	OR			
15 (a)	Obtain the Laplace transform of the following signals i) Impulse function ii) unit step function iii) Asinw0t u(t)	6M	20EC303.5	L4
15 (b)	State and Prove the initial and final value theorem of Laplace transform	6M	20EC303.5	L2

Semester End Examination, January/February, 2022

Degree		B. Tech. (U. G.) Program ECE			Academic Year	202	21 - 2022		
Course	Code	20EC304	Test Duration	3 Hrs.	Max. Ma	rks 70) Semester		
Course		Random Variabl	es and Stochastic	c Process					
Part A	(Short A	Answer Questions	5 x 2 = 10 Marks)						
No.	Quest	ions (1 through 5)					Learning Outcome	(s)	DoK
1		axioms of Probabilit	V				20EC304.1	(0)	L1
2		Random Variable	J				20EC304.2		 L1
3		Marginal Distributi	on Function				20EC304.3		L1
4		s Autocorrelation F					20EC304.4		L1
5		Band Pass Proces					20EC304.5		L1
-		inswer Questions	-)			2020004.0		<u> </u>
No.	Quest	ions (6 through 15)				Marks	Learning Outcome	(s)	DoK
			s the discrete vari	able in the	set		J	(-)	
6 (a)	{-1,-0 {0.1,0.	The random variable X has the discrete variable in the set $[-1,-0.5,0.7,1.5,3]$. The corresponding probabilities are to be $[0.1,0.2,0.1,0.4,0.2]$. Plot its distribution function and state <i>t</i> hether it is a discrete or continuous distribution function				6M	20EC304.1		L2
6 (b)	State a	and Prove Bayes Tl	neorem			6M	20EC304.1		L2
		,		OR			1		
7 (a)	where	The p.d.f of a random variable is given by $fx(x) = Ke-axu(x)$, where a is a positive constant. Determine the value of constant K				6M	20EC304.1		L2
7 (b)	· ·	n about the dist gh Random variabl		•	ions of	6M	20EC304.1		L2
8 (a)	State	and prove Chebych	ev's inequality			6M	20EC304.2		L3
8 (b)		discrete is a rand on given as below ta X -2 -1 P(X) 1/5 2/5 i)E[X] ii) E[X ²] iii)	ble 0 1 1/10 1/10	2 1/5	y mass	6M	20EC304.2		L3
	Lot V	=2X+3, If the rand	om variable is ur	-	stributed				
9 (a)		-2x+3, if the rand -1 , 2], determine fy(morriny dis	SINDULEO	6M	20EC304.2		L3
9 (b)	Explai proper	n about the cha ties	racteristic functio	on and s	tate its	6M	20EC304.2		L2
10 (a)	State a	and explain the prop	perties of joint dens	sity functio	n	6M	20EC304.3		L3
10 (b)		and Y are two in ω) = Ø _X (ω)Ø _Y (ω)	dependent rando	m variable	es, then	6M	20EC304.3		L2
		/		OR					
11 (a)	$f_{XY}(x)$	int p.d.f of a bi-varia (, y) = xy/9; 0 < x =0 ; otherwi d Conditional Densi	< 2,0 <y< 3<br="">se</y<>	у		6M	20EC304.3		L3
11 (b)		and prove central		equal dist	ributions	6M	20EC304.3		L3

12 (a)	Explain briefly about time average and Ergodicity	6M	20EC304.4	L2
12 (b)	Derive the relationship between power spectral density and autocorrelation function	6M	20EC304.4	L4
	OR			
13 (a)	Explain how random processes are classified with neat sketches	6M	20EC304.4	L2
13 (b)	A wide sense stationary process X (t) has autocorrelation function $R_X(\tau) = Ae^{-b T }$ where $b > 0$. Derive the power spectral density function	6M	20EC304.4	L4
14 (a)	A random processes $X(t)$ = Asin(ωt + θ), where A, ω are constants and θ is a uniformly distributed random variable on the interval (- π , π).find average power?	6M	20EC305.5	L2
14 (b)	Derive the relation between input PSD and output PSD of an LTI system	6M	20EC304.5	L4
	OR			
15 (a)	Explain the following i) Noise Figure ii) Noise Sources	6M	20EC304.5	L2
15 (b)	Derive the expression for average cross power between two random process X(t) and Y(t)	6M	20EC304.5	L4

Semester End Examination, January/February, 2022

Course	Digital System)esian					
Course Code	20EC305	Test Duration	3 Hrs.	Max. Marks	70	Semester	III
Degree	B. Tech. (U. G.)	Program	ECE			Academic Year	2021 - 2022

No.	Questions (1 through 5)		Learning Outcome (s)	DoK
1	Represent -41 in singed magnitude		20EC305.1	L1
2	State Duality theorems		20EC305.2	L1
3	Write the steps involved in the design of a combinational circuit		20EC305.3	L1
4	Write the differences between Asynchronous and Synchronous	Counter	20EC305.4	L1
5 Part B	Define Design Flow (Long Answer Questions 5 x 12 = 60 Marks)		20EC305.5	L1
No.	Questions (6 through 15)	Marks	Learning Outcome (s)	DoK
6 (a)	Convert the following (i) $9AC_{16}=()_{10}$ (ii) $123_8=()_{10}$ (iii) $742_{10}=()_{16}$	6M	20EC305.1	L2
6 (b)	Perform the given subtraction using 1's and 2's complement methods: (101011) ₂ -(111001) ₂	6M	20EC305.1	L2
	OR			
7 (a)	Determine the single error correct code for the information code 10111 for odd parity	6M	20EC305.1	L2
7 (b)	(i) Convert the following binary 1010011 into gray code (ii)Convert the following gray code 101011 into its equivalent binary	6M	20EC305.1	L2
8 (a)	(i)Simplify the following three variable expression using Boolean algebra $Y=\Sigma m(1,3,5,7)$ (ii) Simplify the expression $Y=(A+B)$ (A'+C)(B'+C')	6M	20EC305.2	L2
8 (b)	Solve the given expression using consensus theorem A'B'+AC+BC'+B'C+AB	6M	20EC305.2	L2
	OR			
9 (a)	Convert the given expression in canonical SOP form f(A,B,C)=AC+AB+BC	6M	20EC305.2	L2
9 (b)	Minimize the following function using Karnaugh map technique $f(A,B,C,D) = \Sigma_m(5,6,7,12,13) + \Sigma_d(4,9,14,15)$	6M	20EC305.2	L2
10 (a)	Design the full adder using two half adders	6M	20EC305.3	L3
10 (b)	Design a 4-bit Parallel adder/subtractor circuit	6M	20EC305.3	L3
	OR			
11 (a)	Design a 2 Bit Magnitude Comparator using gates	6M	20EC305.3	L3
11 (b)	Show and implement the following function using a PROM $F(w,x,y,z) = \Sigma_m(1,9,12,15)$ G(w,x,y,z) = $\Sigma_m(0,1,2,3,4,5,7,8,10,11,12,13,14,15)$	6M	20EC305.3	L3
12 (a)	Explain the working of JK Flip Flop	6M	20EC305.4	L2
12 (b)	Explain the Conversion of SR Flip Flop to T Flip Flop	6M	20EC305.4	L2
(3)	OR			
13 (a)	Explain the working of Ring Counter	6M	20EC305.4	L2
13 (b)	Explain the working of Shift Register	6M	20EC305.4	L2

14 (a)	Explain the program structure of VHDL and Explain the significance of entity and architecture	6M	20EC305.5	L2
14 (b)	Explain the behavioral design style of VHDL programming with suitable example	6M	20EC305.5	L2
	OR			
15 (a)	Describe the dataflow design style of VHDL programming with suitable example	6M	20EC305.5	L4
15 (b)	List and discuss various data types in VHDL with examples	6M	20EC305.5	L4

Degree		B. Tech. (U. G.)	Program	EEE	-		Academic Year	2021 -	2022
Course		20EE303	Test Duration	3 Hrs.	Max. Marks	70	70 Semester		
Course		ELECTRICAL CI	RCUIT ANALYSIS						
Part A (No. 1 2 3 4 5 Part B (No. 6 (a)	Short A Questi A sine form fa What is State t Write parame Disting Long Ar Questi Discus Use n	nswer Questions 5 ons (1 through 5) wave has a peak v actor s complex impedance the Superposition the the condition for s eters uish between Homo nswer Questions 5 ons (6 through 15) s the principle of Du odal analysis to de dent current source	x 2 = 10 Marks) alue of 12 V. Detern ee? eorem ymmetry and recip geneous and Non– x 12 = 60 Marks) ality with an example etermine V ₁ and p in the circuit shown	rocity with Homogene le ower bein	reference to ous equations g supplied by		20EE303 20EE303 h 20EE303 20EE303 s Learning Outo 20EE303	3.1 3.2 3.3 3.4 3.5 come (s) 3.1	Dok L3 L1 L2 L2 L1 Dok L2
6 (b)		5A 20 Ω Figure	$\begin{array}{c} 30 \ \Omega \\ 0.5 V_1 \end{array}$	0.01V ₁		6M	20EE303	3.1	L3
7 (a)	Give d	etails for source trar	sformation techniqu	OR ue with an o	example	6M	20EE303	3.1	L2
7 (b)	Determ	hine the power abso		sistor in the		6M	20EE303	3.1	L3
8 (a)	capaci total in capaci		onnected a supply on onverting on the supply of the supply	of 230 V, 5 , voltage a	60 Hz. Find the across coil and	6M	20EE303	3.2	L3
8 (b)		that in a pure induc ete cycle averages c		•	upplied over a	6M	20EE303	3.2	L2
9 (a)		nine the equivalent is erating frequency is 20	5 rad/s 0 mF 2 H	OR etwork sho	wn in Figure if	8M	20EE303	3.2	L3
9 (b)	consist	nced 3- phase, 3-w ting of three impeda ompute the line and	nces (1+j1), (1+j2),	(3+j4) ohm	s connected in	4M	20EE303	3.2	L3

_ _ _ ~

10 (a)	Find the value of R in the circuit shown in figure such that maximum power transfer takes place. What is the amount of this power?	7M	20EE303.3	L3
10 (b)	State and explain Norton's theorem	5M	20EE303.3	L1
	OR			
11 (a)	Find the voltage across 10Ω resistance using superposition theorem 1A 6Ω V V V V V V V V	7M	20EE303.3	L3
11 (b)	What is maximum power transfer theorem? Explain it.	5M	20EE303.3	L3
12 (a)	Find the y-parameters of the network shown in below figure $I_1 \rightarrow 4\Omega$ $\downarrow 1_2 \rightarrow 0$ $\downarrow 1_2 \rightarrow 0$	7M	20EE303.4	L3
12 (b)	Explain about Y-parameters of a two-port network	7M	20EE303.4	L2
13 (a)	Find the transmission parameters of the following two port network: $I_1 \rightarrow I_2 \rightarrow I_2$ $I_1 \rightarrow I_2 \rightarrow I_2$ $I_2 \rightarrow I_2 \rightarrow I_2$	6M	20EE303.4	L3
13 (b)	Explain the interrelationships between Z-parameters in terms of ABCD - parameters for a two-port network	6M	20EE303.4	L2
14 (a)	In the following network the switch s is open and steady state is reached. At t = 0, S is closed. Find $i_L(t)$ for t > 0. 100 100 200 5 V S 100 100 100 100 100 100 100 100	7M	20EE303.5	L3
14 (b)	Determine the DC response of RL and RC circuit and sketch the	5M	20EE303.5	L2
. /	voltage transients OR			
15 (a)	The circuit shown in figure consists of series RL elements. The sine wave is applied to the circuit when the switch is closed at $t = 0$. Determine the current i(t)	6M	20EE303.5	L3

	50 sin 25t i (t) ≤ 5 H			
	When the switch is closed at $t = 0$, find the transient currents across inductor for the network shown in below Figure. Assume that initial current across the inductor is zero			
15 (b)	200 V (⁺) 200 V	6M	20EE303.5	L3

D			nester End Examir		anuary/Februa	ary, 20			0004	0000
Degree		B. Tech. (U. G.)	Program	EEE		70		ademic Year	2021 -	
Course		20EE304	Test Duration	3 Hrs.	Max. Marks	70	Se	mester		
Course		DC MACHINES &	TRANSFORMERS							
Part A (Short A	nswer Questions 5	x 2 = 10 Marks)							
No.	•	ons (1 through 5)						Learning Outc	ome (s)	DoK
1			agnetic system? Mei	ntion two	examples			20EE304		L1
2			of a commutator in c					20EE304	.2	L1
3			een 3-point and 4-po					20EE304	1.3	L1
4			p and step-down trai					20EE304		L2
5			ormed on LV side of			ner		20EE304	1.5	L2
Part B (nswer Questions 5			•					
No.	Questi	ons (6 through 15)				Mark	s	Learning Outc	ome (s)	DoK
6 (a)		singly excited magi tic energy stored in	netic system, derive terms of reluctance	the exp	ression for the	6M		20EE304	1.1	L2
6 (b)	Find e		netic force develope	ed in a	doubly-excited	6M		20EE304	l.1	L2
				OR						
7 (a)		expressions of field excited electromech	energy, co energy a anical unit	and mag	netic force in a	6M		20EE304	l.1	L2
7 (b)			rgy in magnetic syste	em with n	eat diagram	6M		20EE304	1.1	L2
8 (a)	Explair	n construction of DC	machine with the he	lp of neat	diagram	7M		20EE304	.2	L2
8 (b)	genera		ture having 40 slots ne speed at which m			5M		20EE304	l.1	L3
				OR						
9 (a)	Explair reactio		cross magnetizing	g effects	s of armature	5M		20EE304	.2	L2
9 (b)		he internal and extent tors and explain the	ernal characteristics	of differe	nt types of DC	7M		20EE304	.2	L2
10 (a)		·	of speed control of do	chunt m	otor	6M	1	20EE304	12	L2
10 (a)			ture current of 110A			OIVI		2022304	1.0	LZ
10 (b)	circuit is Lap-	resistance is 0.2Ω. -connected with 864	The machine has 6- conductors. The fl he gross torque dev	poles an ux per p	d the armature ole is 0.05Wb.	6M		20EE304	l.3	L3
	_			OR						
11 (a)	and ex	plain them	ics of shunt, series		•	6M		20EE304	1.3	L2
11 (b)	· ·	n the procedure of c rcuit diagram	onducting brake-test	on DC r	machine with a	6M		20EE304	1.3	L2
12 (a)	explair	the constructional of				7M		20EE304	1.4	L2
12 (b)	primary second	y winding is conne lary voltage is found	single-phase transfor cted to a 220 V, 5 to be 550 V. Find: i) iximum flux density is	0 Hz A. Primary	C. supply, the and secondary	6M		20EE304	l.4	L3
			·	OR						
13 (a)			r transformer with us			6M		20EE304	l.4	L3
13 (b)		and explain the pha onsidering with wind	sor diagram of singlengen singlengen singlengen source stance stance stance stance stance stance stance stance s	e phase	transformer on	6M		20EE304	l.4	L2
14 (a)			est on a single-phase			7M		20EE304		L2
14 (b)	What a	are the advantages of	f poly-phase transfor	mers? G	ive different	5M		20EE304	1.5	L2

NSRIT

	configurations			
	OR			
15 (a)	 A 10 kVA, 500/250 V, 50 Hz single-phase transformer gave the following test data: OC Test (LV side): 250 V, 1.0 A, 80 W SC Test (HV side): 25 V, 12 A, 100 W Where LV refers to the low voltage and HV refers to high voltage side. Determine the following: (i) Equivalent circuit referred to LV side (ii) Secondary load voltage at 0.8 p.f. lagging with full-load current 	7M	20EE304.5	L3
15 (b)	Derive an expression for the saving of copper in an autotransformer as compared to an equivalent two winding transformer	5M	20EE304.5	L2

_			nester End Exami		anuary/Februa	ary, 20			000		
Degree		B. Tech. (U. G.)	Program	EEE				ademic Year	2021 -		
Course	Code	20EE305	Test Duration	3 Hrs.	Max. Marks	70	Se	mester			
Course		POWER GENERA	TION AND TRANS	MISSION							
	<u>.</u>		• • • • • • • •								
		nswer Questions 5	x 2 = 10 Marks)							D -1	
No.		ons (1 through 5)	· · ·					Learning Outco		Doł	
1		the function of econo		ser				20EE305		L1	
2		Tariff & list types of t						20EE305		L	
3		the importance of A						20EE305		L2	
4		s meant by skin effec						20EE305		Ľ	
5		e types of insulators ι		n				20EE305	5.5	L1	
•		nswer Questions 5	(12 = 60 Marks)								
No.		ons (6 through 15)				Mark	S	Learning Outco	ome (s)	Dol	
6 (a)	operati			•		6M		20EE305	5.1	L2	
6 (b)		the layout of Hydro the main componer			site and briefly	6M		20EE305	5.1	L2	
		· ·		OR							
7 (a)	Draw a operati	a neat schematic dia on	gram of Nuclear po	wer plant	and explain its	6M		20EE305	5.1	L	
7 (b)	Compa	are the characteristic	s of Thermal, Hydro	& Nuclea	r power plants	6M		20EE305	5.1	L	
. ,											
8 (a)	i)	the following terms i Load factor ii) Di Plant use factor	versity factor iii) F	Plant capa	city factor	6M		20EE305	5.2	Ľ	
8 (b)	A power station has maximum demand of 15000KW, the Annual load factor is 50%, plant capacity factor is 40%. Determine the following i) Annual energy produced ii) Installed capacity of plant iii) Reserve capacity of plant iv) Utilization factor					6M		20EE305	5.2	Ľ	
				OR							
9 (a)	cost, S	n the cost of generat Semi-fixed cost and & diversity factor influ	operating cost. Also	o commei		6M		20EE305	5.2	L2	
9 (b)		n briefly the following riff ii) power factor tar			system. i) two-	6M		20EE305	5.2	L	
10 (a)	equation	s the concepts of s	nes			6M		20EE305	i.3	Ľ	
10 (b)	triangle km of	ree conductors of a 3° e of sides 2 m, 2.5 m the line when the er of each conductor	n and 4.5 m. Calc conductors are re	ulate the	inductance per	6M		20EE305	i.3	Ľ	
				OR							
11 (a)	Analyz	e the capacitance of	a single phase Two	o-wire line	•	6M		20EE305	5.3	L	
· /											
11 (b)	A 3-phase, 50 Hz, 132 kV overhead line has conductors placed in a horizontal plane 4 m apart. Conductor diameter is 2 cm. If the line length is 100 km, calculate the charging current per phase assuming complete transposition 6M 20EE305.3							L			
12 (a)		the A, B, C, D con Nominal- π method	stants of the Mediu	um transm	ission lines by	5M		20EE305	5.4	L	
12 (b)	A 3-ph p.f. lag	ase, 50 Hz transmiss ging and at 110 kV. per km are 0·2 Ω	The resistance and	reactance	e of the line per	7M		20EE305	5.4	L	

-. ~~~~

NSRIT

	admittance is $2.5 \times 10-6$ siemen/km/phase. Calculate : (i) the current and voltage at the sending end (ii) efficiency of transmission. Use nominal T method			
	OR			
13 (a)	Describe the effect of power factor on efficiency and regulation	5M	20EE305.4	L2
13 (b)	3-phase line delivers 3600 kW at a p.f. 0.8 lagging to a load. If the sending end voltage is 33 kV, determine (i) the receiving end voltage (ii) line current (iii) transmission efficiency. The resistance and reactance of each conductor are 5.31Ω and 5.54Ω respectively	7M	20EE305.4	L3
14 (a)	Derive the expression for the Sag in horizontal plane when the conductor is covering ice and wind pressure	6M	20EE305.5	L2
14 (b)	A transmission line has a span of 200 metres between level supports. The conductor has a cross-sectional area of 1.29 cm ² , weighs 1170 kg/km and has a breaking stress of 4218 kg/cm ² . Calculate the sag for a safety factor of 5, allowing a wind pressure of 122 kg per square metre of projected area. What is the vertical sag?	6M	20EE305.5	L3
	OR			
15 (a)	Explain the role of guard ring in improving the string efficiency	5M	20EE305.5	L2
15 (b)	A 3-phase transmission line is being supported by three disc insulators. The potentials across top unit (i.e., near to the tower) and middle unit are 8 kV and 11 kV respectively. Calculate (i) the ratio of capacitance between pin and earth to the self-capacitance of each unit (ii)the line voltage and (iii) string efficiency	7M	20EE305.5	L3

		Sen	nester End Exami	nation, J	anuary/Februa	ary, 20)22				
Degree		B. Tech. (U. G.)	Program	ME			Aca	ademic Year	2021 -	21 - 2022	
Course	Code	20ME302	Test Duration	3 Hrs.	Max. Marks	70	Ser	nester	I		
Course		Thermodynamics	6								
Part Δ (Short A	nswer Questions 5	x 2 = 10 Marks)								
No.		ons (1 through 5)						Learning Outco	ome (s)	DoK	
1		state, process and c	vcle					20ME301		L1	
2		specific heat and en						20ME301		L2	
3		s Gibb's function?	indip y					20ME301		L2	
4		Dryness Fraction						20ME301		L1	
5		dry and wet bulb ten	perature					20ME301		L1	
Part B (nswer Questions 5 >									
No.		ons (6 through 15)	/			Mark	s	Learning Outco	ome (s)	Dok	
6 (a)	What is	s a thermodynamic s itable examples	ystem? Explain diffe	erent clas	ses of systems	6M		20ME301	. ,	L2	
6 (b)		are macroscopic and	microscopic approa	aches in t	hermodynamic	6M		20ME301	.1	L2	
		-		OR		1					
7 (a)	Show t	hat work is a path fu	nction and not a pro	-		5M		20ME301	.1	L2	
7 (b)	A mass MPa to	s of 1.5 kg of air is co 0.7 MPa for which	mpressed in a quas pv = constant. Th	si-static pr le initial d	ensity of air is	7M		20ME301		L3	
	Write o	g/m ³ . Find the work of a second seco	uation for steady flo	·							
8 (a)	(a) Ste (b) Ste (c) Cer	applied for the followi am turbine am nozzle htrifugal compressor	ng systems:			10N	1	20ME301	.2	L3	
8 (b)		ndenser the first law of therm	odynamics			2M		20ME301	2	L1	
0 (U)	Deline		ouynamics	OR		ZIVI			.2	LI	
9 (a)	output	engine receives he of 8.2 kW. Determin jection				8M		20ME301	.2	L3	
9 (b)		internal energy and	prove that it is a pro	perty of th	ie system	4M		20ME301	.2	L2	
10 (a)	Eatabli	ah tha aguivalanaa a	f Kalvin, Dlanak and		atatamanta	6M		20ME301	2	L2	
10 (a)		sh the equivalence o			statements	6M					
10 (b)	DISCUS	s about Carnot theor	em with heat diagra	m OR		UN		20ME301	.J	L2	
11 (a)	temper refriger ⁰ C and work o (i) Ev transfe (ii) Rec COP o	ersible heat engin ratures of 600 °C a rator which operates I -20 °C. The heat tra- utput of the combined aluate the heat tra- r to the reservoir at 4 consider (i) given that f the refrigerator are	nd 40 °C. The eng between reservoir ansfer to the engine d engine-refrigerato nsfer to the refrige 0 °C. at the efficiency of the each 40% of their m	een two gine drive s at temp e is 2000 r plant is 3 erant and the heat e	es a reversible leratures of 40 kJ and the net 360 kJ. the net heat engine and the	8M		20ME301		L3	
11 (b)	Explair	n about heat engine a	and heat pump			4M		20ME301	.3	L2	
12 (a)	quality degree	s of wet steam at te 0.8 to pressure 3 ba of superheat of 66.5 expansion and during	r. It is then heated a °C. Find the entha	at constar lpy and er	t pressure to a tropy changes	7M		20ME301	.4	L3	
12 (b)	Explair	h about phase trans phase change				5M		20ME301	.4	L2	

NSRIT

	OR			
13 (a)	A rigid vessel of capacity 0.2 m ³ holds 10 bar steam at 250 °C. The vessel is slowly cooled till the steam pressure drops to 3.5 bar. Determine the (i) final temperature and dryness fraction of steam; (ii) change in entropy	7M	20ME301.4	L3
13 (b)	Sketch the H-S and P-T diagram of a pure substance	5M	20ME301.4	L2
14 (a)	Explain about adiabatic mixing of perfect gases	5M	20ME301.5	L2
14 (b)	A mixture of hydrogen (H ₂) and oxygen (O ₂) is to be made so that ratio of H ₂ to O ₂ is 2:1 by volume. If the pressure and temperature are 1 bar and 25 respectively, calculate: (i) The mass of O ₂ required. (ii) The volume of the container	7M	20ME301.5	L3
	OR			
15 (a)	State van-der-Waals equation of state	6M	20ME301.5	L1
15 (b)	Explain the following i)Heating and humidification ii) Cooling and dehumidification	6M	20ME301.5	L2

		Se	mester End Exam	ination, J	anuar	y/Febru	ary, 2	022			
Degree		B. Tech. (U. G.)	Program	Mechar	nical Er	igineerin	g	A	ademic Year	2021 -	2022
Course	Code	20ME303	Test Duration	3 Hrs.	Max.	Marks	70	Se	emester	I	
Course		Material Science	& Metallurgy								
Dart A (Short A	nswer Questions 5	x 2 = 10 Marke)								
No.		ons (1 through 5)	X Z = 10 widths						Learning Outo	ome (s)	DoK
1		metallic bonding							20ME302		L2
2		are malleable and no	dular cast iron						20ME302		L2
3		s meant by Age hard							20ME302		L1
4		y two applications of							20ME302		L1
5		are cermets?	, 0,						20ME302	2.5	L1
Part B (Long A	nswer Questions 5	x 12 = 60 Marks)								
No.	Questi	ons (6 through 15)					Mar	ks	Learning Outo	ome (s)	DoK
6 (a)		fy in detail the differe lislocation with a nea		mperfectio	ns. Exp	plain the	61	Ν	20ME302	2.1	L2
6 (b)		are the three most on of them	common intermedia	te alloy pł	nases?	Explain	61	Ν	20ME302	2.1	L2
				OR							
7 (a)		s lever rule? Explain					61	N	20ME302	2.1	L2
7 (b)		a neat labeled Iron- itectoid reaction in it	Iron Carbide diagr	am and e	xplain	eutectic	61	Ν	20ME302	2.1	L2
8 (a)		n structure and prope					61		20ME302		L2
8 (b)	Write t	he properties and ap	plications of tool an		s		61	Λ	20ME302	2.2	L2
	\A/rito	the election of	aannar allava? Da	OR	inner	anaa of					
9 (a)	brass	the classification of			•		OI		20ME302		L2
9 (b)	Discus	s briefly about super	alloys and mention	their appl	ications	6	61	N	20ME302	2.2	L2
10 (a)	Differe	ntiate between anne	aling and normalizir	ng			61	Λ	20ME302	2.3	L2
10 (b)	Define harder	hardenability of a nability	material and expl	ain the fa	ctors a	affecting	61	Ν	20ME302	2.3	L2
		-		OR							
11 (a)	Draw 7	ITT diagram for eute	ctoid steel? Explain	its feature	es		61	Λ	20ME302	2.3	L2
11 (b)	Discus	s briefly about cryog	enic treatment of al	loys			61	Ν	20ME302	2.3	L2
12 (a)	Discus	s any two methods o	of powder production	n			61	N	20ME302	2.4	L2
12 (b)		s sintering in powder					61		20ME302	2.4	L2
				OR							
13 (a)	compo		U	•		0,	61	Ν	20ME302	2.4	L2
13 (b)	Discus machir	s about Sintering So ning	econdary operations	s (i) sizing	(ii) coi	ning (iii)	61	Ν	20ME302	2.4	L2
14 (a)	\N/rit≏ t	he classification of c	eramics? Evolain w	ith evamnl	65		61	1	20ME302	25	L2
14 (a) 14 (b)		n the importance and					6		20ME302		L2 L2
i n (D)	слріан			OR	.03			VI		2.0	LZ
15 (a)	Descri	be various methods	of the manufacturing		tes		61	Л	20ME302	2.5	L2
15 (b)		are Nano materials?					6		20ME302		L1

Degree	Semester End Examination, Jar B. Tech. (U. G.) Program ME			cademic Year	2021 - 202	22
Course	() 5	Max. Marks			2021 - 202 III	-2
		iviax. Iviaľks	70 S	emester		
Course	Mechanics of Solids					
Part A (Short Answer Questions 5 x 2 = 10 Marks)					
No.	Questions (1 through 5)			Learning Outc	ome (s) Do)oK
1	Define the elasticity and plasticity			20ME303		L1
2	Differentiate the point load, UDL and VDL			20ME303		
3	M/I=f/y=E/R – justify			20ME303		L2
4	What is pure torsion?			20ME303		L2 L1
5	Define buckling and stability			20ME303		L1
	Long Answer Questions 5 x 12 = 60 Marks)			ZUIVIEJU	D.I L	
No.			Marks	Learning Oute	ome (s) Do	
	Questions (6 through 15)			Learning Outc		
6 (a)	Draw a neat stress- strain curve diagram of stainless steel		6M	20ME303	3.2 L	L2
6 (b)	A hollow cylinder 2000 mm long has an outside diameter of inside diameter of 30 mm. If the cylinder is carrying a load the stress and elongation when the modulus of elasticity is OR	of 20 kN, find	6M	20ME303	3.2 L	L2
7 (a)	A steel bar of 20 mm diameter is acted upon by the forces elongation of the bar when young's modulus, E = 210 G elongation by principal of super position A B C D C D G O A $30kN$ 4 $30kN$ 4 $20kN$ $3m$ $1m$ $2m$ $2m$	Pa. Find net	6M	20ME303	3.3 L	L2
7 (b)	The stresses on two perpendicular planes through a point 100 MPa (Tensile) and 60 MPa (Compression). Determin and tangential stress on a plane at an angle 30 ^o with (ACW). Draw configuration and Mohr's diagrams	e the normal	6M	20ME303	3.3 L	L2
8 (2)	Write about the types of heams		6M	20ME303	20 1	L2
8 (a)	Write about the types of beams Draw shear force and bending moment diagrams for a can		ЫМ	20ME303	3.2 L	L2
8 (b)	and find shear force and bending moments of span carryin loads 2 kN and 5 kN at right end and 0.5 m from right end 5 kN 2 kN A $C \downarrow$ 0.5 m B 2 m	g two point	6M	20ME303	3.2 L	L2
	OR					
9 (a)	Differentiate the shear force and bending moments uniformly distributed and variably distributed loads applied	-	6M	20ME303	3.2 L	L2
9 (b)	A cantilever beam 4 m long carries a VD, 2 kN/m at the fixed end and draw SFD and BMD 5 kN 5 kN 4 m 4 m	iree end to 5	6M	20ME303	3.2 L	L2
10 (a)	Write the sign convention of shear force and bending mom	ent	6M	20ME303	3.2 L	L2
- \/	Draw the free body diagram, shear force and bending mor					
10 (b)			6M	20ME303		L2

... /- - -0000

	OR			
11 (a)	The simply supported beam is 5 m carries a point load 4 kN at a distance of 1.5 m from left where the UDL of 2 kN/m starts from point load for 1 m. Find the reactions and draw the SFD and BMD $\begin{array}{c c} & 4 & kN & 2 & kN/m \\ & 4 & kN & 2 & kN/m \\ & A & C & D & B \\ & R_A & 1.5 & m & 1.5 & m & R_B \end{array}$	6M	20ME303.3	L4
11 (b)	Derive the equations for simply supported beam with UVL	6M	20ME303.2	L2
12 (a) 12 (b)	Derive equation for moment of inertia for a rectangular section Derive an equation for torsion	5M 7M	20ME303.2 20ME303.2	L2 L2
13 (a)	OR A cantilever beam of span L is subjected to a concentrated load W at a distance 'a' from fixed end. Find the deflection of free end $A \square B \downarrow C = y_1$ $L = y_2$	5M	20ME303.2	L2
13 (b)	Explain the Macaulay's method in deflection of beams	7M	20ME303.3	L2
14 (a) 14 (b)	Explain the buckling Derive Euler's formula	6M 6M	20ME303.2 20ME303.2	L3 L2
45 (-)	OR		00145202.0	
15 (a) 15 (b)	What is a circumferential and longitudinal stress Differentiate thin and thick cylinders	5M 7M	20ME303.2 20ME303.2	L2 L2

		Sei	mester End Exami	ination, J	anuary	//Febru	ary, 2	022	2		
Degree		B. Tech. (U. G.)	Program	Mechar	nical En	igineerir	ng	A	cademic Year	2021 -	2022
Course	Code	20ME304	Test Duration	3 Hrs.	Max.	Marks	70	Se	emester		
Course		MANUFACTURIN	G PROCESS	1							
	(Chaut Au	ower Ouestiens E	x 2 = 40 Marka)								
No.		swer Questions 5 ons (1 through 5)	x z = 10 warks)						Learning Outco	me (s)	DoK
1		re the advantages	casting?						20ME304		L1
2		the steel making	•						20ME304		L2
3		• •	velding processes?						20ME304		L2
4		be briefly about for	V 1							20ME304.4	
5		note on thread rol							20ME304	.5	L1
	B (Long Answer Questions 5 x 12 = 60 Marks)										1
No.								s	Learning Outco		DoK
6 (a)	a) Explain steps involved in a casting process with a neat sketch Explain type of patterns and also explain any three patterns with a								20ME304	.1	L2
6 (b)	Explain neat sk	•••	ind also explain an	y three pa	atterns	with a	6M		20ME304	.1	L1
	1			OR							
7 (a)		injection molding					6M		20ME304	.1	L2
7 (b)		teps are involved he die casting proc	in the preparation	of a Cas	ting? E	xplain	6M		20ME304	.1	L1
	briony										
0 (-)	Explain	with the help of a	a neat sketch expla	in the co	nstructi	ion and	<u></u>		2014520	1.0	10
8 (a)		g of Cupola furnace					6N		20ME304		L2
8 (b)	How is	upsetting different	from fullering in for	• •			6N	1	20ME304	1.2	L2
0 ()				OR					001/500		10
9 (a)		• • •	ed components wit		•	nts?	6N		20ME304		L2
9 (b)	Explain	the two types of c	rucible furnaces wi	th diagran	าร		6N	1	20ME304	1.2	L2
10 (a)	Explain	the advantages a	nd applications of c	oxy-acetyle	ene we	lding.	7N	1	20ME304	1.3	L2
10 (b)			s that control the	weld qua	lity in	manual	5N	1	20ME304	1.3	L2
	metai-a	rc welding?		OR							
	Evolain	the TIG systems	s of arc-welding g	-	nnlicat	ions of					
11 (a)	each	-					VIO	1	20ME304	1.3	L2
11 (b)	Explain each	the MIG system	s of arc-welding g	jive the a	pplicat	ions of	6N	1	20ME304	1.3	L2
									1		1
12 (a)	Describ	e the electro slag	welding process				5N	1	20ME304	1.4	L2
12 (b)	Describ	e the electron bea	m welding process				7N		20ME304	1.4	L2
40 ()				OR				_	0004500		
13 (a)			equire diffusion we				6N	1	20ME304	1.4	L2
13 (b)	Explain weldme		welding and is ro	Die in the	succe	ss of a	6N	1	20ME304	1.4	L2
14 (a)		hot rolling operation		ada ara PP			7N	1	20ME304	1.5	L1
. ,		• • • •	gh and (iii) four h	ign rolling	mill						
14 (b)	write a	note on thread rol	ing process	OR			5N	1	20ME304	t.J	L2
15 (a)	Fnume	rate the typical apr	plications of cold wo	-			4N	1	20ME304	15	L1
	Litanio						110	•	20101200-		- 1

15 (b)	Explain the various methods available for blow molding of	8M	20ME304.5	10
	thermoplastics giving their relative applications	OIVI	ZUIVIE304.3	LZ